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Nearly-optimal effective stability estimates around

Diophantine tori of Hölder Hamiltonians

Santiago Barbieri Gerard Farré

Abstract

We prove that the solutions of Hölder-differentiable Hamiltonian systems, as-

sociated to initial conditions in a small ball of radius ρ > 0 around a La-

grangian, (γ, τ)−Diophantine, quasi-periodic torus, are stable over a time

tstab ≃ 1/(|ρ|1+
ℓ−1
τ+1 | ln ρ|ℓ−1), where ℓ > 2d + 1, ℓ ∈ R, is the regular-

ity, and d is the number of degrees of freedom. In the finitely differentiable

case (for integer ℓ), this result improves the previously known effective stabil-

ity bounds around Diophantine tori. Moreover, by a previous work based on

the Anosov-Katok construction, it is known that for any ε > 0 there exists a

Cℓ-Hamiltonian, with ℓ ≥ 3, admitting a sequence of solutions starting at dis-

tance ρn → 0 from a (γ, τ)-Diophantine torus that diffuse in a time of order

tdiff
n ≃ 1/(|ρn|

1+ ℓ−1
τ+1

+ε). Therefore the stability estimates that we show are

optimal up to an arbitrarily small polynomial correction.

Keywords. Hamiltonian systems, Quasi-periodic invariant tori, Effective sta-

bility, Nekhoroshev Theory.

1 Introduction, setting, and main result

In this note, we study the effective stability of Hölder Hamiltonians around Lagrangian, Dio-

phantine, quasi-periodic invariant tori.

Namely, given a positive integer d, we consider the space Rd endowed with the standard

sup-norm || · ||∞, and we indicate by BR := B∞(0, R) ⊂ R
d the open ball of radius R > 0

centered at the origin, and by Td := Rd/Zd the d-dimensional torus. Given ℓ ∈ R and D
a domain of Rd, we denote by Cℓ(D) the space of bounded Hölder differentiable functions,

endowed with the standard Hölder norm

||f ||Cℓ(D) := sup
|α|≤q

sup
x∈D

|∂αf(x)|+ sup
α∈Nn| |α|=q

sup
x,y∈D

0<|x−y|<1

|∂αf(x)− ∂αf(y)|

|x− y|µ
< +∞ , (1.1)

where q := [ℓ], µ := ℓ− q, and where we have made use of standard multi-index notation.

Within this setting, for ℓ ≥ 2, we focus on HamiltoniansH ∈ Cℓ(Td×BR) that - in standard

action-angle coordinates - take the form

H(θ, I) = ω · I + f(θ, I) , (1.2)

with f(θ, I) = O(θ, I2). For any time t ∈ R for which it is defined, the associated flow starting

at (θ, I) ∈ Td × BR is indicated by Φt
H(θ, I). It is known that, for Hamiltonians of the kind

1
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(1.2), T0 = Td ×{0} is an invariant, Lagrangian quasi-periodic torus of frequency ω associated

to H . Moreover, we assume that ω is Diophantine, i.e. that there exist γ > 0, τ ≥ d − 1 such

that

|ω · k| ≥
γ

|k|τ
, ∀ k ∈ Z

d \ {0}.

The set of vectors satisfying this condition for fixed values of τ and γ is denoted by Ωd
τ,γ , and

we will also indicate Ωd
τ =

⋃
γ>0 Ωd

τ,γ .

Within this setting, the main result of the present work is the following:

Theorem 1. For any Hamiltonian H ∈ Cℓ(Td×BR) as in (1.2), with ℓ > 2d+1 and ω ∈ Ωd
τ,γ ,

there exist constants ρ∗, C1 > 0 such that, for any 0 < ρ < ρ∗, and for any (θ0, I0) ∈ Td × Bρ,

the flow Φt
H verifies

||ΠIΦ
t
H(θ0, I0)− I0||∞ <

ρ

2
over a time |t| < tstab =

C1

ρ1+
ℓ−1
τ+1 |log ρ|ℓ−1

. (1.3)

Expression (1.3) improves the estimates provided by Bounemoura in the finitely-differentiable

case. Namely, in [5, Corollary 3], the author proved that - given an integer k ≥ 3 - for any

Hamiltonian of class Ck around a (γ, τ)-Diophantine torus - there exist ρ∗ > 0 and C > 0
(depending only on γ, τ, k, d, R) such that for all 0 < ρ < ρ∗,

T (ρ) := inf
θ0∈Td,|I0|≤ρ

{
t > 0, ‖ΠIΦ

t
H(θ0, I0)‖∞ = 2ρ

}
≥

C

ρ1+
k−2
τ+1

. (1.4)

An immediate Corollary of Theorem 1, which follows by combining Theorem 1 with The-

orem A in [9], is the following.

Corollary 1. For any real τ > d − 1, ℓ > 2d + 1 and for any pair of real constants T0 > 0,

ε > 0, there exist

1. a Hamiltonian H ∈ Cℓ(Td × BR) of the form (1.2) with ω ∈ Ωd
τ ;

2. a sequence of initial conditions (θn, In) verifying ρn := ||In|| → 0;

3. an associated sequence of times

tn :=
T0

ρ
1+ ℓ−1

τ+1
+ε

n

; (1.5)

4. a pair of constants C1, c > 0;

such that, for every n ≥ 0, the flow Φt
H(θ, I) starting at any (θ, I) in a ball of radius r :=

|ρn|

4
e−c|tn| around (θn, In) verifies

‖ΠIΦ
t
H(θ, I)‖∞ <

3

2
ρn for |t| <

C1

ρ
1+ ℓ−1

τ+1
n |ln ρn|ℓ−1

(1.6)

and

sup
t∈[0,tn]

‖ΠIΦ
t
H(θ, I)‖∞ ≥ 2ρn . (1.7)
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Remark 1. The result from Theorem A in [9] is stated for finitely differentiable Hamiltonian

systems but it follows trivially from the proof that it does also hold for Hölder differentiable

Hamiltonians. This allows us to state the result from Corollary 1 for any real ℓ > 2d + 1
instead of only doing so for integer ℓ > 2d+ 1.

Comparing (1.5) with (1.6) and (1.7), we see that Theorem 1 provides almost optimal

bounds of stability, in the sense that it ensures the existence of orbits whose stability and diffu-

sion times match up to an arbitrarily small polynomial difference1. As we anticipated above, the

existence of small neighborhoods of points accumulating on a Diophantine torus and verifying

estimate (1.7) was proved in Theorem A in [9], where examples of instability were built by

making use of Anosov-Katok constructions (see [1, 11]). Therefore, up to an arbitrarily small

polynomial correction, the present work does close the question of optimality for the effective

stability estimates around quasi-periodic Diophantine tori of Hölder Hamiltonians.

In the literature, the question of finding upper bounds of stability and their optimality around

Diophantine tori has been addressed also in the real-analytic and Gevrey classes. In these cases

exponentially large upper bounds for the stability times have been found (see [12, 13, 15, 16]).

The sharpness of the stability exponents in these estimates has been proved in [8].

We stress that, in our case, no transversality conditions on the integrable part such as quasi-

convexity or steepness2 are assumed. In particular, if quasi-convexity or steepness hold, longer

upper bounds of stability are known to exist ([6, 14]), and the question of optimality for these

cases requires different techniques such as Herman’s synchronization method (see [10]).

The stability estimates of Theorem 1 are obtained by combining the improved analytic

smoothing techniques introduced in [4] together with standard normal form lemmas in analytic

class (see [16]). The main idea (firstly introduced in [4]) consists in regularizing Hamiltonian

H in (1.2) by making use of a suitable analytic smoothing Lemma for Hölder functions, and

then in applying an analytic Normal Form Lemma (see [16]) to the smoothed Hamiltonian Hs.

Clearly, this strategy works if the distance H − Hs can be controlled in a suitable norm (see

[4, par. 4.3.2] for more details on this technique). However, in the case under study, a direct

implementation of the strategy in [4] would not work and delicate modifications must carefully

be considered in the construction.

In order to see heuristically what fails by applying directly the techniques from [4] to our

case, we start by observing that, in order to smooth the function H in (1.2), one only needs

to smooth the function f , whose expansion starts at order two in the actions. However, its

smoothed counterpart, indicated by fs, contains, in general, linear terms in the actions, and

this hinders the whole construction. This difficulty is overcome here by truncating the Taylor

expansion of f (in the actions) around the origin, by smoothing the coefficients (which depend

only on the angles) of the associated polynomial, and by suitably controlling the remainder

of the initial truncation. Moreover, it is worth noticing that - in the classical case of study -

a rescaling of the action variables in order to pass from a small domain around the torus to a

domain of order one is implemented. As we discuss in more detail in the next section, this would

not work when analytic smoothing techniques are used. Moreover, working on a small domain

in the action variables, in turn, requires extra care when estimating the size of the normal form

transformation w.r.t. these coordinates.

The rest of the paper is devoted to the proof of Theorem 1.

1The presence of the logarithmic factor in (1.6) is due to the use of analytic smoothing of Hölder functions in

order to obtain stability estimates (see [4]).
2Steepness is a generic transversality condition on the gradient of sufficiently smooth functions. See [4] for an

introduction to its dynamical properties and [2, 3] for a discussion and proof of its genericity.
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2 Proof of Theorem 1

We indicate by Tn
C

:= Cn/Zn the complexification of the real torus. For any subset U ⊂
Td × Rd, we indicate its complex extension of analiticity widths σ, ρ > 0 as

Uσ,ρ :=

{
(θ, I) ∈ T

d
C
× C

d | sup
I′∈ΠIU

|I − I ′|2 < ρ, ||Im(θ)||∞ < σ

}
, (2.1)

where | · |2 indicates the standard euclidean norm.

Now, we introduce a couple of lemmas that will be used in the proof of the Theorem 1.

We start with the following result on the analytic smoothing of Hölder functions defined

on the torus. It is a special case of a more general statement concerning functions defined in

Td×BR, whose complete proof can be found in [4]. The latter, in turn, is an improved version3

of analytic smoothing results due to Jackson, Moser and Zehnder (see [17, 7]).

Lemma 1 (Analytic smoothing). Fix an integer d ≥ 1 and s ∈ (0, 1]. Let g ∈ Cℓ(Td), with

ℓ > 2d+ 1. Then there exist two constants CA = CA(ℓ, d) and CB = CB(ℓ, d) and an analytic

function gs on the closed complex extension Td
s whose distance to the original function g is

controlled, for any p ∈ N, 0 ≤ p ≤ ℓ, by the estimate

‖g − gs‖Cp(Td) ≤ CAs
ℓ−p‖g‖Cℓ(Td), (2.2)

and whose Fourier norm verifies the non-trivial equality and bound

|||gs|||s :=
∑

k∈Zd

|(ĝs)k|e
|k|s =

∑

k∈Zd

|k1|+...+|kd|≤1/s

|ĝk|e
|k|s ≤ CB‖g‖Cℓ(Td) . (2.3)

Proof. We refer the reader to the periodic case in [4, pag. 365].

Remark 2. The function gs is analytic on the boundary4 of Td
s , so that in the Fourier norm in

(2.3) we can choose an analyticity width exactly equal to s, instead of restricting to smaller

domains as one usually does in these cases (see [4]).

We will also need to use the classic Normal form Lemma for analytic functions, which was

proved in [16]. Below we give a restatement of this result that can be found in [4].

Consider two numbers α,K > 0. We will say that ω ∈ Rd is (α,K) completely non-

resonant if, for all k ∈ Zd\{0} with
∑n

i=1 |ki| ≤ K, one has |k·ω| ≥ α. Now, take ρ0, σ, σ0 > 0,

with σ0 > σ, and let H(θ, I) = h(I) + f(θ, I) be an analytic Hamiltonian on the complex

extension (Td×D)σ0,ρ0 , where D is an open set of Rd such that, for any I ∈ D, ω(I) := ∇h(I)
is (α,K) completely non-resonant. Also, let M denote an upper bound for the hermitian norm

of the Hessian of h over ΠI((T
d ×D)σ0,ρ0). Then the following result holds.

Lemma 2 (Normal form Lemma). If, for some ρ > 0 and ξ > 1 one is ensured

|||f |||σ,ρ := sup
I∈ΠI(Td×D)σ,ρ

∑

k∈Zd

|̂fk(I)|e
|k|σ ≤

1

256ξ

αρ

K
, ρ ≤ min

(
ρ0,

α

2ξMK

)
, Kσ ≥ 6

(2.4)

3Estimate (2.3), in particular, is a special case of a new highly non-trivial estimate [4, formula (4.22)].
4It is actually entire in Td

C
, but outside of Td

s its size grows too quickly to be useful, see [4]
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then there exists a real-analytic, symplectic transformation Ψ mapping the set (Td ×D)σ/6,ρ/2
into (Td ×D)σ,ρ, and taking H into resonant normal form, that is

H ◦Ψ(φ, J) = h(J) + f∗(φ, J), |||f∗|||σ/6,ρ/2 ≤ e−Kσ/6|||f |||σ,ρ. (2.5)

Furthermore, Ψ is close to the identity, in the sense that, for any (φ, J) ∈ (Td ×D)σ/6,ρ/2, one

has

|ΠJΨ− J |2
ρ

≤ 23
K

αρ
|||f |||σ,ρ ≤

1

32ξ
,

‖ΠφΨ− φ‖∞
σ

≤
25K

3αρ
|||f |||σ,ρ ≤

1

24ξ
. (2.6)

Lemma 1 and Lemma 2 will allow us to prove Theorem 1.

Proof of Theorem 1. First of all, let us rewrite the Hamiltonian given in (1.2),

H(θ, I) = ω · I + f(θ, I) .

By expanding f in Taylor series, we can split it into two terms as follows,

f(θ, I) = Pℓ−2(θ, I) + Z(θ, I),

where

Pℓ−2(θ, I) :=
∑

k∈Nd,
2≤|k|≤[ℓ]−2

ak(θ)I
k , Z(θ, I) :=

∑

β∈Nd,
|β|=[ℓ]−1

Rβ(θ, I)I
β (2.7)

and

ak(θ) :=
1

k!
∂
|k|
I f(θ, 0) , Rβ(θ, I) :=

|β|

β!

∫ 1

0

(1− t)|β|−1Dβf(θ, tI) dt.

Next, for a fixed s ∈ (0, 1) we apply Lemma 1 to the coefficients ak(θ) in order to obtain

real-analytic coefficients ak,s ∈ Cω(Td
s) and positive constants CA and CB such that5

|||ak,s|||s ≤ CB‖ak‖Cℓ(Td). (2.8)

and

‖ak − ak,s‖C1(Td) ≤ CAs
ℓ−1‖ak‖Cℓ(Td). (2.9)

If we now define

(Pℓ−2)s(θ, I) :=
∑

2≤|k|≤[ℓ]−2

k∈Nd

ak,s(θ)I
k (2.10)

we can then rewrite H as

H(θ, I) = ω · I + (Pℓ−2)s(θ, I) + (Pℓ−2(θ, I)− (Pℓ−2)s(θ, I)) + Z(θ, I).

5Differently from [4], a direct application of Lemma 1 to the function f would yield a function containing linear

terms w.r.t. the actions (see also the introduction) and thus hinder the whole construction. In order to see this from

a heuristic point of view, one should take into account the fact that the analytic smoothing Fs of a given Hölder

functionF on Rd is given by its convolution with a kernel K which is, in turn, the anti-Fourier transform of a bump

function Φ : Rd −→ R (see [7]). In formulas Fs(x) :=
∫
Rd K(x/s− y)F (y)dy, with K(x) =

∫
Rd e

iηxΦ(η)dη. It

is clear by these formulas that, if the expansion of F starts at order two, that of Fs starts at order one in general.
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Now, let us fix a real ρ0 ≤ s, and an integer K ≥ 1. We consider the near-to-identity symplectic

change of variables Ψ, obtained by applying Lemma 2 to the analytic Hamiltonian

ω · I + (Pℓ−2)s ∈ Cω(Ad
s,ρ0) , A := T

d × R
d

in the smaller (α := γ/Kτ , K) non-resonant domain Td×D := Td×Bρ around the Diophantine

torus Td × {0}. In order for this to make sense, we need to fix ρ ≤ ρ0 sufficiently small so that

the conditions (2.4) of Lemma 2

|||(Pℓ−2)s|||s,ρ ≤
1

256ξ

αρ

K
, ρ ≤ min

(
ρ0,

α

2ξMK

)
, Ks ≥ 6 (2.11)

are satisfied.

It follows from (2.10), (2.8) and a standard computation that there exists a positive constant

C0 = C0(d) such that the Fourier norm of (Pℓ−2)s verifies

|||(Pℓ−2)s|||s,ρ ≤ C0CB max
2≤|k|≤[ℓ]−2

k∈Nd

‖ak,s‖Cℓ(Td) ρ
2, (2.12)

leading to the condition, by imposing the first equation in (2.11), that

ρ ≤
1

256ξC0CB max2≤|k|≤[ℓ]−2

k∈Nd

‖ak,s‖Cℓ(Td)

α

K
. (2.13)

If we set, for τ ≥ d− 1, for a > 0, b ≥ 1, and for a suitable constant ρ̃ > 0

α =
γ

Kτ
, K =

(
ρ̃

ρ

)a

, s =

(
ρ

ρ̃

)a

|log ρb| (2.14)

then (2.13) becomes

ρ ≤
1

256ξ

γ

C0CB max2≤|k|≤[ℓ]−2

k∈Nd

‖ak,s‖Cℓ(Td)

(
ρ

ρ̃

)a(τ+1)

. (2.15)

Thus if we choose

a =
1

τ + 1
, ρ̃ =


 γ

256ξ C0CB max2≤|k|≤[ℓ]−2

k∈Nd

‖ak,s‖Cℓ(Td)




1
a(τ+1)

(2.16)

then equation (2.15) is satisfied. We also observe that - with the choices in (2.14), by the

fact that b ≥ 1, and since M > 0 can be taken arbitrarily close to zero as the integrable

part of our hamiltonian is linear - the second and third inequalities in (2.11) are satisfied for

ρ < min{ρ0, e
−6}.

Hence, by Lemma 2 we obtain a symplectic change of variables

Ψ : (Td ×D)s/6,ρ/2 → (Td ×D)s,ρ

such that

H̃(φ, J) := H ◦Ψ(φ, J)

= ω · J + (Pℓ−2)s ◦Ψ(φ, J) + (Pℓ−2 − (Pℓ−2)s) ◦Ψ(φ, J) + Z ◦Ψ(φ, J).
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From Pöschel’s normal form lemma, the analytic part of the Hamiltonian is mapped into

ω · J + (Pℓ−2)s ◦Ψ(φ, J) = h(J) + f∗(φ, J)

with h and f∗ satisfying the inequalities in (2.5). Therefore, we are reduced to study the dy-

namics of the action variables under the Hamiltonian

H̃(φ, J) = h(J) + f∗(φ, J) + (Pℓ−2 − (Pℓ−2)s) ◦Ψ(φ, J) + Z ◦Ψ(φ, J). (2.17)

In particular, our next goal is to bound the partial derivative with respect to φ of the non-

integrable part of (2.17), as it is this quantity which controls the drift of the actions variables.

We do this separately for the three terms above: the analytic remainder f∗(φ, J), the remainder

(Pℓ−2 − (Pℓ−2)s) ◦ Ψ(φ, J) originating from the smoothing technique, and the remainder Z ◦
Ψ(φ, J) coming from the initial truncation.

For the first term, notice that, due to Lemma 2, to estimate (2.12), and to the choice in (2.14),

one has the bound

‖f∗(φ, J)‖s/6,ρ/2 ≤ e−Ks/6|||(Pℓ−2)s|||s,ρ ≤ C0CB max
2≤|k|≤[ℓ]−2

k∈Nd

‖ak,s‖Cℓ(Td) ρ
2+ b

6 (2.18)

and thus by making use of the Cauchy inequalities, for any i = 1, . . . , d,

‖∂φi
f∗(φ, J)‖s/12,ρ/2 ≤ C1ρ

2+ b
6
−a/| log(ρb)| ,

for some C1 > 0 depending only on the initial data of the problem.

For the second term we firstly observe that, for any i = 1, . . . , d,

∂φi
(Pℓ−2 − (Pℓ−2)s)) ◦Ψ(φ, J) =∇J(Pℓ−2 − (Pℓ−2)s))(Ψ(φ, J))∂φi

ΠJΨ

+∇φ(Pℓ−2 − (Pℓ−2)s))(Ψ(φ, J))∂φi
ΠφΨ

=∇J(Pℓ−2 − (Pℓ−2)s))(Ψ(φ, J))∂φi
ΠJΨ

+∇φ(Pℓ−2 − (Pℓ−2)s))(Ψ(φ, J))(∂φi
ΠφΨ− 1)

+∇φ(Pℓ−2 − (Pℓ−2)s)(Ψ(φ, J)).

(2.19)

Then, by using Cauchy inequalities and (2.6) we obtain that there exists a positive universal

constant C2 > 0 such that

‖∂φi
ΠJΨ(φ, J)‖s/12,ρ/2 ≤ C2ρ/s , ‖∂φi

ΠφΨ− 1‖s/12,ρ/2 ≤ C2. (2.20)

Now, by recalling (2.14) and by using (2.7) and (2.9), we obtain that there exists a constant

C3 > 0 depending only on the initial data of the problem such that

‖∇J(Pℓ−2 − (Pℓ−2)s))(Ψ(φ, J))‖C0(Td×Bρ/2)
≤ C3ρ

1+aℓ|log(ρb)|ℓ,

‖∇φ(Pℓ−2 − (Pℓ−2)s))(Ψ(φ, J))‖C0(Td×Bρ/2) ≤ C3ρ
2+a(ℓ−1)|log(ρb)|ℓ−1.

(2.21)

Thus, it follows by combining (2.19) with the bounds in equations (2.20) and (2.21) that there
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exists a constant C4 > 0 such that 6, for any i = 1, . . . , d,

‖∂φi
(Pℓ−2 − P̃ℓ−2,s) ◦Ψ(φ, J)‖C0(Td×Bρ/2)

≤ ‖∇J(Pℓ−2 − (Pℓ−2)s))(Ψ(φ, J))‖C0(Td×Bρ/2) ‖∂φi
ΠJΨ

∗(φ, J)‖s/12,ρ/2

+ ‖∇φ(Pℓ−2 − (Pℓ−2)s))(Ψ(φ, J))‖C0(Td×Bρ/2) ‖∂φi
ΠφΨ− 1‖s/12,ρ/2

+ ‖∇φ(Pℓ−2 − (Pℓ−2)s)(Ψ(φ, J))‖C0(Td×Bρ/2) ≤ C4ρ
2+a(ℓ−1)|log(ρb)|ℓ−1.

(2.22)

Finally it follows easily from the second expression in (2.7) that, for any i = 1, . . . , d,

‖∂φi
Z ◦Ψ(φ, J)‖s/6,ρ/2 ≤ C5ρ

ℓ−1, (2.23)

for some constant C5 > 0. Thus we arrive at the conclusion that, for any initial condition

(φ0, J0) ∈ Td × B7ρ/6 and for any time t for which the flow is well-defined, the associated

solution Φt
H̃
(φ0, J0) verifies

‖ΠJΦ
t
H̃
(φ0, J0)− J0‖∞

≤

∫ t

0

sup
i∈{1,...,d}

|∂φi
[f∗(φ, J) + (Pℓ−2 − (Pℓ−2)s) ◦Ψ(φ, J) + Z ◦Ψ(φ, J)]| ds

≤ |t|(C1ρ
2+ b

6
−a/| log(ρb)|+ C4ρ

2+a(ℓ−1)|log(ρb)|ℓ−1 + C5ρ
ℓ−1). (2.24)

It follows from a computation that, since we are assuming d ≥ 2 and ℓ > 2d+1 7, then estimate

ℓ− 1 > 2 + a(ℓ− 1) ⇐⇒ ℓ >
3− a

1− a
= 3 +

2

τ
≥ 3 +

2

d− 1
≥ 5

is automatically verified, so that the term in (2.23) is dominated by the one in (2.22) for suffi-

ciently small ρ. Moreover, if we choose b = 6(aℓ+1) it follows that also the bound in (2.18) is

smaller than (2.22), so that, finally there exists a constant C6 > 0 such that estimate (2.24) can

be rewritten as

‖ΠJΦ
t
H̃
(φ0, J0)− J0‖∞ ≤ |t|C6ρ

2+a(ℓ−1)|log(ρb)|ℓ−1.

This implies that for any time

t < t∗ =
1

6 C6ρ1+a(ℓ−1)|log(ρb)|ℓ−1

the solution associated to any (real) initial condition (φ0, J0) ∈ Td ×Bρ+ρ/6 is well defined and

satisfies

sup
t∈[0,t∗]

‖ΠJΦ
t
H̃
(φ0, J0)− J0‖ < ρ/6.

6We observe that the first bound in (2.21) is larger than the second one by a factor ρ, due to the fact that on the

l.h.s. one has a derivative w.r.t. the actions J which make the corresponding function start at order one in J , while

the second term to be estimated in (2.21) starts at order two in J . If the size of the normal form w.r.t. the action

coordinates (first bound in (2.20)) were estimated in the standard way for this kind of computations (i.e. with a

bound of order one, analogously to the second estimate on the angle shift in (2.20)), one would have had a bound

of order O(ρ1+a(ℓ−1)) in formula (2.22) which would have worsened the time estimates of the whole theorem.

Instead, the correct estimation in (2.20) yields an identical bound of order O(ρ2+a(ℓ−1)) for all terms at the r.h.s.

of (2.22). This hidden (but important!) detail is due to the fact that - differently from the usual case - we could not

rescale the action variables at the beginning in order to have a domain of order one. This, in turn, is due to the fact

that - if ρ were a quantity of order one - the first estimate in (2.20) would explode, as s must be a small quantity in

order for the analytic smoothing technique to be useful (see (2.9)).
7Originally, the condition ℓ > 2d + 1 in Theorem 1 is needed in order for estimate (2.3) in Lemma 1 to hold

(see [4, par. 4.2]).
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It also follows from (2.6) that for (φ, J) ∈ (Td × Bρ)s/6,ρ/2 the size of the normal form in the

actions is bounded by

‖ΠJΨ− J‖∞ ≤
ρ

6
,

and so we obtain that in the original variables, for any initial condition (θ0, I0) ∈ T
d × Bρ, and

for any time t such that |t| < t∗ as above, one has

‖I(t)− I0‖ ≤ ‖I(t)− J(t)‖+ ‖J(t)− J0‖+ ‖J0 − I(0)‖ < 3×
ρ

6
=

ρ

2
,

whence

‖ΠIΦ
t
H(θ0, I0)− I0‖ <

ρ

2
.

This concludes the proof.
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[12] Àngel Jorba and Jordi Villanueva. On the normal behaviour of partially elliptic lower-

dimensional tori of Hamiltonian systems. Nonlinearity, 10(4):783–822, 1997.

[13] Todor Mitev and Georgi Popov. Gevrey normal form and effective stability of Lagrangian

tori. Discrete Contin. Dyn. Syst. Ser. S, 3(4):643–666, 2010.

[14] Alessandro Morbidelli and Antonio Giorgilli. Superexponential stability of KAM tori. J.

Statist. Phys., 78(5-6):1607–1617, 1995.

[15] Anthony D. Perry and Stephen Wiggins. KAM tori are very sticky: rigorous lower bounds

on the time to move away from an invariant Lagrangian torus with linear flow. Phys. D,

71(1-2):102–121, 1994.
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