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ABSTRACT. By taking full advantage of the structure of complex algebraic curves and by
using compactness arguments, in this paper we give a self-contained proof that holomorphic
algebraic functions verify a uniform Bernstein-Remez inequality. Namely, their growth
over a bounded, open, complex set is uniformly controlled by their size on a compact com-
plex subset of sufficiently high cardinality. Up to our knowledge, the first known demon-
stration on the existence of such an inequality for a specific subset of algebraic functions
is contained in Nekhoroshev’s 1973 breakthrough on the genericity of close-to-integrable
Hamiltonian systems that are stable over long time. Despite its pivotal rôle, this passage
of Nekhoroshev’s proof has remained unnoticed so far. This work aims at extending and
generalizing Nekhoroshev’s arguments to a modern framework. We stress the fact that our
proof is different from the one contained in Roytwarf and Yomdin’s seminal work (1998),
where Bernstein-type inequalities are proved for several classes of functions.

1. INTRODUCTION AND MAIN RESULT

1.1. The Bernstein-Remez inequality. Let Ω ⊂ ℂ be an open bounded domain,  ⊂ Ω
be a compact subset and let f ∶ Ω⟶ ℂ be holomorphic inΩ and continuous in its closure
Ω. The Bernstein’s constant of f with respect to Ω, is the quantity

B(f,,Ω) ∶= max
Ω

|f |∕max


|f | .

Any family  of holomorphic functions defined in Ω and continuous in Ω is said to satisfy
a uniform Bernstein-Remez inequality if there exists C(,Ω) > 0 such that for all f ∈ 

max
Ω

|f | ≤ C(,Ω) max


|f | or, equivalently, if sup
f∈

B(f,,Ω) ≤ C(,Ω) .

The term Bernstein-Remez inequality is used in order to avoid confusion with other sorts
of Bernstein’s inequalities that involve derivatives or primitives (see e.g. [19]).

The Bernstein-Remez inequality and the existence of families verifying a uniform esti-
mate of this kind turn out to be important inmany areas ofmathematics. Without pretending
to make a complete survey on the subject, we observe that these kind of estimates appear
in the study of the local behavior of certain holomorphic functions (see e.g. [39], [9], [31],
[16], [11], [36], [17]), in questions related to the second part of Hilbert’s 16th problem (see
e.g. [22], [9], [27], [10], [21]), in the study of special classes of ODEs (see e.g. [28]) and
subelliptic PDEs (see e.g. [19], [20]), as well as in potential theory (see e.g. [38], [12]) and
in dynamical systems when investigating questions related to entropy (see e.g. [40]).

In this article, we are interested in finding a family of functions verifying a uniform
Bernstein-Remez inequality. Namely, by extending a strategy due to Nekhoroshev [32] and
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that is different from the known demonstrations in this field (see [37], [8], [42], [12]), with
the above notations we shall prove the following. If

(1) the graph of f solves the algebraic equation S(z, f (z)) = 0 for some non-zero
polynomial S ∈ ℂ[X, Y ] of degree k;

(2) the algebraic curve of S over Ω is given by the union of vertical lines of the form
{(z,w) ∈ ℂ2 | z = z∗} together with disjoint graphs of holomorphic functions
over Ω;

(3) the cardinality of  is strictly greater than k;
then the Bernstein’s constant of f w.r.t. Ω, depends on k but is independent of f .

Before stating this result more rigorously (see Theorem 1.2), let us discuss our motiva-
tion for developing this subject.

1.2. Rôle in Hamiltonian dynamics and Nekhoroshev theory. The authors discovered
the Bernstein-Remez inequality during the investigation of an important result of Hamil-
tonian dynamics. However, before describing the key rôle played by the Bernstein-Remez
estimate in this field, we make a short review of some general results which are helpful in
order to make the context clear to the reader.

Namely, Hamiltonian formalism is the natural setting appearing in the study of many
physical systems. In the simplest case, we consider the motion of a point on a Riemann-
ian manifold , called configuration manifold, governed by Newton’s second law (q̈ =
−∇U (q) for a potential function U in the euclidean case, with q a system of local coordi-
nates for). This system can be transformed by duality thanks to Legendre’s transforma-
tion and reads

ṗ = −)qH(p, q) , q̇ = )pH(p, q) ,

where H(p, q) is a real differentiable function on the cotangent bundle T ∗, classically
called Hamiltonian, and p is the coordinate conjugated to q. Systems integrable by quadra-
ture are an important class of Hamiltonian systems. AHamiltonian system depending on 2n
variables (n degrees of freedom) is said to be integrable in the sense of Arnol’d-Liouville if
it can be conjugated to a Hamiltonian system on the cotangent bundle of the n-dimensional
torus T n, whose equations of motion take the form

İ = −)#ℎ(I) = 0 , #̇ = )Iℎ(I) ,

where (I, #) ∈ ℝn × T n are called action-angle coordinates. Therefore, the phase space for
an integrable system is foliated by invariant tori carrying the linear motions of the angu-
lar variables (called quasi-periodic motions). Integrable systems are exceptional, but many
important physical problems are governed by Hamiltonian systems which are close to inte-
grable. Namely, the dynamics of a nearly-integrable Hamiltonian system is described by a
Hamiltonian function whose form in action-angle coordinates (I, #) ∈ ℝn × T n reads

H(I, #) ∶= ℎ(I) + "f (I, #) ,

where " is a small parameter. The structure of the phase space for this kind of systems
can be inferred with the help of Kolmogorov-Arnol’d-Moser (KAM) theory. Namely, un-
der a generic non-degeneracy condition for ℎ, a Cantor set of large measure of invariant
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tori carrying quasi-periodic motions for the integrable flow persists under a suitably small
perturbation (see e.g. ref. [2], [14]).

For systems with three or more degrees of freedom, KAM theory yields little informa-
tion about trajectories lying in the complementary of such Cantor set, where instabilities
may occur (see e.g. ref. [1]). However, in a series of articles published during the seventies
(see ref. [33], [34], or [25], [4] for a more modern presentation), Nekhoroshev proved an
effective result of stability for all initial conditions holding over a time which is exponen-
tially long in the inverse of the size " of the perturbation, provided that the Hamiltonian
is analytic and that its integrable part satisfies a generic transversality property known as
steepness.

In order to introduce the steepness property, we fix a positive integer n ≥ 2 and we
indicate by Bn(0, R) the real n-dimensional ball of radius R centered at the origin. Then,
we have

Definition 1.1 (Steepness). Fix � > 0, R > 0. A C2 function ℎ ∶ Bn(0, R + 2�) → ℝ
is steep in Bn(0, R) with steepness indices �1,… ,�n−1 ≥ 1 and steepness coefficients
C1,… , Cn−1, � if:

(1) infI∈Bn(0,R) ||∇ℎ(I)|| > 0;
(2) for any I ∈ Bn(0, R), for any integer 1 ≤ m < n, and for any m-dimensional

subspace Γm orthogonal to∇ℎ(I) and endowed with the induced euclidean metric,
one has:

(1.1) max
0≤�≤�

min
u∈Γm, ||u||2=�

||�Γm ∇ℎ(I + u) || > Cm��m , ∀� ∈ (0, �],

where �Γm stands for the orthogonal projection on Γm.

Remark 1.1. Since in definition 1.1 the subspace Γm ⊂ ℝn is endowed with the induced
metric, for all u ∈ Γm one has ||�Γm ∇ℎ(I + u)|| = ||∇(ℎ|I+Γm )(I + u)||, where ℎ|I+Γm
indicates the restriction of ℎ to the affine subspace I + Γm.

Remark 1.2. It is worth mentioning that a real-analytic function is steep if and only if it
has no isolated critical points and if any of its restrictions to any affine proper subspace has
only isolated critical points (see [26] and [35]).

With this notion, Nekhoroshev’s effective result of stability reads

Theorem 1.1 (Nekhoroshev, 1977). Consider a nearly-integrable system with Hamiltonian
H(I, #) ∶= ℎ(I) + "f (I, #) analytic in some complex neighborhood of Bn(0, R) × T n, and
assume that ℎ is steep. Then, there exist positive constants a, b, "0, C1, C2, C3 such that,
for any " ∈ [0, "0) and for any initial condition not too close to the boundary, one has
|I(t) − I(0)| ≤ C2"a for any time t satisfying |t| ≤ C1 exp

(

C3∕"b
)

.

Nekhoroshev also proved in [32] that the steepness condition is generic, both in measure
and in topological sense: for a sufficiently high positive integer r, the Taylor polynomials
of order less or equal than r of non-steep functions are contained in a semi-algebraic1 set
having positive codimension in the space of polynomials of order bounded by r. Hence,

1A subset ofℝn is said to be semi-algebraic if it can be determined by a finite number of polynomial equalities
and inequalities.
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steep functions are characterised by the fact that their Taylor polynomials satisfy suitable
algebraic conditions (see [34] and [3]). Although these results have been studied and ex-
tended for more than forty years (so that Nekhoroshev Theory is a classic subject of study in
the dynamical systems community), the proof of the genericity of steepness has remained,
up to now, largely unstudied and poorly understood. This is certainly due to the fact that
such a demonstration does not involve any arguments of dynamical systems, but combines
quantitative reasonings of real-algebraic geometry and complex analysis. It is precisely in
those reasonings that the Bernstein-Remez inequality plays a major rôle.

1.2.1. The rôle of Bernstein-Remez inequality. Acrucial step inNekhoroshev’s proof of the
genericity of steepness consists in considering, for any fixed polynomialP ∈ ℝ[X1,… , Xm],
the semi-algebraic set - called thalweg nowadays (see [6]) - defined by

(1.2) P ⊂ ℝm ∶= {u ∈ ℝm
| ||∇P (u)|| ≤ ||∇P (v)|| ∀v ∈ ℝm s.t. ||u|| = ||v||} .

Remark 1.3. In order to grasp why this kind of set is interesting in the study of the genericity
of steepness, it is worth comparing (1.2) with (1.1) from a heuristic point of view. Infact, in
Definition 1.1, one is interested in controlling quantitatively the projection of the gradient
of the function ℎ on any affine subspace Γm which is orthogonal to ∇ℎ(I). Fixing Γm and
taking Remark 1.1 into account, if one approximates the restriction ℎ|I+Γm by its Taylor
polynomial Pℎ,I+Γm at a suitable order, then studying the locus

{

I + u ∈ I + Γm s.t. ||∇Pℎ,I+Γm (I + u)|| = min
w∈Γm, ||w||=�

||∇Pℎ,I+Γm (I +w)||
}

amounts to studying the set Pℎ,I+Γm in (1.2), where we have identified P ≡ Pℎ,I+Γm .

Nekhoroshev shows that, for any open ball  ⊂ ℝm and for any given polynomial P ,
the intersection P ∩ contains a real analytic curve  such that both the distance between
the extremities of  and the complex analyticity width of its parametrization admit a lower
bound that depends only on m and on the degree of the polynomial P . More specifically, 
can be parametrized by algebraic functions. The existence of a uniform Bernstein-Remez
inequality (also proved in [32] in a less general context than the one we consider in the
following paragraphs) ensures uniform upper bounds on the derivatives of these charts.

The uniform control on the parametrization of the curve  is unavoidable in [32], since it
ensures that - for a smooth function - steepness is an open property which can be determined
by the Taylor expansion at a certain order (we have a "finite-jet" determinacy of steepness).
Namely, with the setting of Definition 1.1, if for anym-dimensional subspace Γm orthogonal
to ∇ℎ(I) the Taylor polynomial Pℎ,I+Γm verifies condition (1.1), then the uniform control
on the derivatives of the curve  contained in the thalweg Pℎ,I+Γm ensures that estimate
(1.1) is verified uniformly also by polynomials belonging to a neighborhood of Pℎ,I+Γm .

In this way, the study of the genericity of steepness is reduced to the study of uniform
lower estimates of the kind (1.1) in a finite-dimensional setting which involves polynomials
of bounded order. This aspect, together with additional technicalities which will not be
discussed here, is crucial in order to prove that the Taylor polynomial of suitably high order
of non-steep functions are contained in a semi-algebraic set having positive codimension in
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the space of polynomials of bounded order. This aspect will be investigated and specified
in a forthcoming paper of the first author.

1.3. Rôle in semi-algebraic geometry. Actually, the result about the thalweg described
above is a particular case of a general theorem about analytic reparametrizations of semi-
algebraic sets. Namely, in refs. [41] and [43], Yomdin has shown that - with the exception
of a small part - any two-dimensional semi-algebraic set can be covered by the images of
a finite number of real-analytic, algebraic charts of the interval [−1, 1]. Moreover, thanks
to the existence of a Bernstein-Remez inequality for algebraic functions, one has a bound
over the size of all the derivatives of these charts that depends only on the order of the
derivation and on the degrees of the polynomials involved in the definition of the considered
semi-algebraic set. This is a partial extension of the theorem (called Algebraic Lemma)
about the Ck−reparametrization of semi-algebraic sets proved independently by Yomdin
and Gromov (see [40], [24], [13]). The analytic reparametrization in [41] result has recently
been generalized (see [5] and [15]) to higher dimensional sets with more general structures
than semi-algebraic, which allows for important applications in arithmetics.

From a more general point of view, the steepness condition is introduced to prevent
the abundance of rational vectors on certain sets. In particular, deep applications of the
controlled analytic parametrizations of semi-algebraic sets - yielding bounds on the number
of integer points in semi-algebraic sets - are given in [5] and [15]. Along these lines of
ideas, the Yomdin-Gromov algebraic lemma with tame parametrizations of semi-algebraic
sets (see [40], [24]) was used by Bourgain, Goldstein, and Schlag [7] to bound the number
of integer points in a two-dimensional semi-algebraic set.

1.4. Different strategies of proof. In ref. [32], Nekhoroshev proves the existence of a
Bernstein-Remez inequality for algebraic functions in his specific problem, by exploiting
the properties of complex algebraic curves and by making an intensive use of complex
analysis (especially, of compactness arguments exploiting Montel’s Theorem). The origi-
nal statements are difficult to disentangle from the context of the genericity of steepness and
their proofs are very sketchy. The existence of Bernstein-Remez inequalities in more gen-
eral situations has been proved in relatively more recent times by Roytwarf-Yomdin [37],
Briskin-Yomdin [8], and Yomdin [42], by combining the controlled growth of the Taylor
coefficients of p-valent functions2 together with arguments of analytic geometry. Moreover,
in a closely related problem, Brudnyi has proved in [12] the existence of Bernstein-Remez
inequalities for polynomials restricted to graphs of multivariate holomorphic functions.

Nekhoroshev’s different strategy of proof is briefly mentioned in [37] (p. 848), with-
out quoting [32]. The strategy of Brudnyi’s work [12] relies mainly on potential theory.
In particular, Lemma 2.1 in [12] contains a reasoning similar to a minor part of Nekhoro-
shev’s reasonings in combination with a result by Sadullaev (see [38]). However, the overall
framework of [12] is very different fromNekhoroshev’s one, and the core of Nekhoroshev’s
arguments does not appear (in particular, Lemma 4.2 below). In conclusion, so far we have

2An analytic function over a disc is said to be p-valent if either it is constant or each element of Im(f ) is the
image of at most k points. Any algebraic function f satisfying S(z, f (z)) = 0 for some non-zero polynomial
S ∈ ℂ[X, Y ] of degree k is k-valent (Lemma 3.1).
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not been able to find any reference that shows Nekhoroshev’s proof in detail except for the
original paper (see [32], Lemma 5.1, p.446).

This is our motivation for a short, self-contained exposition of Nekhoroshev’s proof
relying on arguments complex analysis. Actually, Nekhoroshev [32] shows the existence of
a Bernstein-Remez inequality only in the case in which the compact set is a real segment
and the considered algebraic functions have a particular form, since this is sufficient for his
purposes. Here, we extend this strategy by considering any compact set  of high enough
cardinality and we get rid of the additional conditions on the form of the algebraic functions.

Nekhoroshev’s approach presents two drawbacks. It does not allow for quantitative esti-
mates for the Bernstein constants as in [37] and [42]. Moreover, we were not able to prove
a Bernstein-Remez inequality for an algebraic function on its maximal disk of regularity,
what is obtained in [37] and is called structural inequality, but only for the maximal disk of
regularity of all the algebraic functions associated to the considered polynomial. However,
these two points are not mandatory for applications of the Bernstein-Remez inequality to
Nekhoroshev’s arguments on the thalweg and, more generally, to describe the overall struc-
ture of semi-algeraic sets (see [41]).

Finally, as it was already known in [32] and is central in [37], the existence of uniform
Bernstein’s constants implies uniform bounds on the Taylor coefficients of algebraic func-
tions. In this spirit, we shall also state a result of this kind in Corollary 2.1.

1.5. Main result. By the discussion above, it is of crucial importance to find classes of
functions admitting a uniform bound on their Bernstein’s constants, and thus satisfying
a uniform Bernstein-Remez inequality. In this paper we will establish the existence of a
uniform Bernstein-Remez inequality for the following class of analytic-algebraic functions:

Definition 1.2. Consider k ∈ ℕ, � > 0 and denote by �(0) the open complex disk of
radius � centered at the origin.

We indicate by (k, �) the set of functions f that satisfy:
(1) f is holomorphic over �(0) ;
(2) The graph of f is included in an algebraic curve

RS ∶= {(z,w) ∈ ℂ2 ∶ S(z,w) = 0}

associated to a non-zero polynomial S ∈ ℂ[z,w] of degree at most k, hence

S(z, f (z)) = 0 for z ∈ �(0) ;

(3) The algebraic curve RS is such that RS ∩ {�(0) × ℂ} is the union of at most k
elements that can be either vertical lines of the form {(z,w) ∈ ℂ2 | z = z∗} or
disjoint graphs of holomorphic functions over �(0).

The functions in the class (k, �) verify the following

Theorem 1.2 (Main result). With the notations of Definition 1.2, consider a compact set
 ⊂ �(0) satisfying:

(1.3) 0 ∈  and card () > k.

Then, the functions of the family (k, �) verify a uniform Bernstein-Remez inequality
with respect to  and to any open set Ω such that  ⊂ Ω and Ω ⊂ �(0).



7

Consequently, there exists a number C = C(k, �,,Ω) > 0 such that, for any f ∈
(k, �), one has:

max
z∈Ω

|f (z)| ≤ C max
z∈

|f (z)| .

This theorem has been demonstrated by Briskin-Yomdin and Roytwarf-Yomdin in refs.
[8]- [37] in the cases where  = [−�′, �′] ⊂ ℝ or  = �′ (0) ⊂ ℂ, and Ω = �′′ (0) ⊂ ℂ,
with 0 < �′ < �′′ < �. Moreover, the authors obtain quantitative estimates on the upper
bound C(k, �′, �′′,) for the Bernstein’s constant and they generalize these results to rele-
vant cases of algebraic families of holomorphic functions. More recently, these estimates
have been extended by Yomdin and Friedland to the case of a discrete compact  of suf-
ficiently high cardinality in refs. [42] and [23], thanks to the introduction of a geometric
invariant related to entropy.

This paper is organized as follows: section 2 contains the mathematical setting and the
results, whereas section 3 contains their proofs. Section 4 is devoted to the proof of some
technical lemmas that are used in section 3 and is the "core" of Nekhoroshev’s strategy
(especially Lemma 4.2). Finally, we have relegated to the appendices the statements of
some auxiliary results that are used throughout the paper.

2. SETTING AND OTHER RESULTS

2.1. Setting. For any r > 0 and any z0 ∈ ℂ, we denote by r(z0) the open complex disk
centered at z0 and by r(z0) its closure.

ℂ[z,w] indicates the ring of polynomials of two variables over the complex field. Through-
out this paper, wewill often identifyℂ[z,w]withℂ[z][w], the ring of complex polynomials
in w over the ring of polynomials of the complex variable z.

For k ∈ ℕ, we indicate by (k) ⊂ ℂ[w] and (k) ⊂ ℂ[z,w] respectively the subspaces
of complex polynomials in one and two variables having degree inferior or equal to k. Since
(k),(k) are finite-dimensional, they can be equipped with an arbitrary norm.

2.2. Other results. With the notations of Theorem 1.2, we consider the following class of
functions:

Definition 2.1. For k ∈ ℕ and � > 0, we denote by 0(k, �) ⊂ (k, �) the subset of those
functions g ∈ (k, �) that satisfy g(0) = 0.

The functions of the family 0(k, �) belong to the same Bernstein’s class w.r.t. the sets
Ω and  of Theorem 1.2. Namely, one has:

Theorem 2.1. Consider an open set Ω satisfying Ω ⊂ �(0) and  ⊂ Ω a compact set
satisfying card  > k. There exists a number C0 = C(k, �,,Ω) > 0 that bounds uniformly
the Bernstein’s constants of the elements of 0(k, �), i.e.:

for any g ∈ 0(k, �), one has max
z∈Ω

|g(z)| ≤ C0 maxz∈
|g(z)|.

Remark 2.1. The hypothesis 0 ∈  of Theorem 1.2 is unnecessary in Theorem 2.1.
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Theorem 1.2 is a consequence of Theorem 2.1 since, for any f ∈ (k, �), the function
g(z) ∶= f (z) − f (0) belongs to the class 0(k, �) and Theorem 2.1 ensures:

max
Ω

|f | ≤|f (0)| + max
Ω

|g| ≤ |f (0)| + C0 max
|g|

≤|f (0)| + C0|f (0)| + C0max
|f | = (1 + 2C0) max

|f | ∶= C max


|f |

where the last estimate comes from the hypothesis 0 ∈ .
This concludes the proof of Theorem 1.2

Theorem 2.1 is also the cornerstone which allows one to prove a uniform upper bound
on the Taylor coefficients of functions in 0(k, �). More specifically, we introduce the
following class of bounded algebraic functions:

Definition 2.2. With the previous notations, for any M ≥ 0 and for any compact  ⊂
�(0), we denote by  (k, �,,M) the subset of those functions g ∈ 0(k, �) that verify
max |g| =M .

Hence, we have 0(k, �) = ∪M≥0 (k, �,,M).

The functions in (k, �,,M) satisfy a generalized uniform Cauchy inequality, namely

Corollary 2.1. Under the additional assumption card  > k, there exists a constant K =
K(k, �,) such that, for any function g ∈  (k, �,,M), the coefficients of the Taylor
series

(2.1) g(z) =
+∞
∑

j=1
ajz

j (witℎ g(0) = 0)

satisfy the uniform inequality
(1)

|aj| ≤ K(k, �,)M if � > 1 ;

(2) for any number m > 1

|aj| ≤ K(k, m,)M
(

m
�

)j
if � ≤ 1 .

Remark 2.2. This result is stated and used in [32] in the particular case where � > 1,
 = [0, �] ⊂ ℝ,M(�) = � and � > 0. The equivalence between a uniform bound on the
growth of the Taylor coefficients and the Bernstein-Remez inequality is central in [37].

Theorem 2.1 and Corollary 2.1 will be proved in the next section.

3. PROOF OF THE MAIN RESULTS

We first need the following standard lemma:

Lemma 3.1. With the notations of the previous section, an analytic-algebraic function f ,
associated to a polynomial S ∈ ℂ[z,w] of degree k ∈ ℕ, is k-valent: that is, if f is not
constant then each element of Im(f ) is the image of at most k points. Consequently, if f
is not identically zero, then f cannot be identically zero over any set  included in the
domain of definition of f such that Card() > k.
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Proof. Assume, by contradiction, that f is non-constant and that there exists w0 ∈ Im(f )
which is the image of at least p > k points. The polynomial Sw0 (z) ∶= S(z,w0) would
admit p > k roots while deg(Sw0 ) ≤ k by hypothesis. The Fundamental Theorem of
Algebra ensures that Sw0 must be identically zero and one has the factorization S(z,w) =
(w−w0)�Ŝ(z,w), where � ∈ {1, ..., k}, while Ŝ cannot be divided by (w−w0) in ℂ[z,w].
Since f is analytic and not constant, the preimage f−1({w0}) is a discrete set and the graph
of f must satisfy Ŝ(z, f (z)) = 0 outside of f−1({w0}). By continuity, one has Ŝ(z, f (z)) =
0 on the whole domain of definition of f since f−1({w0}) is discrete. But deg Ŝw0 ≤ k,
with Ŝw0 (z) ∶= Ŝ(z,w0), and Ŝw0 admits more than k roots, hence the previous argument
ensures that Ŝ can be divided by (w −w0), in contradiction to construction.

Moreover, if f ≢ 0, then 0 admits at most k inverse images by f , and f cannot be
identically null over any set  included in the domain of definition of f and satisfying
card  > k. �

Consequently - without any loss of generality - in Theorem 2.1 we can assume g ∈
 (k, �,, 1) according to Definition 2.2 (hence g ∈ 0(k, �) and max |g| = 1) since, if
this is not the case, it suffices to consider g∕max |g|.

Then, we define the following set:

Definition 3.1.  ∶= (, k, �) denotes the set of those polynomials S ∈ (k)∖{0}
whose algebraic curve RS ∶= {(z,w) ∈ ℂ2 ∶ S(z,w) = 0} satisfies

(1) RS ∩{�(0)×ℂ} is the union of at most k elements that can be either vertical lines
of the form {(z,w) ∈ ℂ2 | z = z∗} or disjoint graphs of holomorphic functions
over �(0) ;

(2) there exists gS ∈  (k, �,, 1) whose graph is contained in RS ∩ {�(0) × ℂ}.

Remark 3.1. For any S ∈ , the function gS is unique since the graphs contained in the
algebraic curve of S are disjoint over �(0) and the value gS (0) = 0 is fixed.

The central property in the proof of Theorem 2.1 is the following

Lemma 3.2.  ∪ {0} is closed in (k) and, for any open set Ω satisfying  ⊂ Ω, Ω ⊂
�(0), the function

�Ω ∶ ⟶ ℝ S⟼ max
Ω

|gS |

is continuous.

We shall relegate the proof of Lemma 3.2 to the next section and we shall exploit its
statement here to prove Theorem 2.1 and Corollary 2.1.

Proof. (Theorem 2.1)
By Definitions 2.1, 2.2 and 3.1, we can associate to any g ∈  (k, �,, 1) a polynomial

S ∈  such that g = gS . A standard combinatorial computation yields that (k) is
isomorphic to ℂm, with m = (k+1)(k+2)∕2. It is also easy to see that for any polynomial
S ∈  and for any c ∈ ℂ∖{0} the polynomial S′ = cS belongs to and gS′ ≡ gS , so that
it makes sense to pass to the projective space

ℂℙm−1 ∶= {ℂm∖{0}}∕{ℂ∖{0}} , � ∶ ℂm∖{0}⟶ ℂℙm−1 ,
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where� denotes the standard canonical projection inducing the quotient topology inℂℙm−1.
Moreover, for any open set Ω satisfying  ⊂ Ω, Ω ⊂ �(0), the function

�̂Ω ∶ �()⟶ ℝ , �(S)⟼ max
Ω

|gS |

is well defined and continuous by Lemma 3.2. To prove the latter claim, take a closed set
 ⊂ ℝ and consider its inverse image �̂−1Ω () = �(�

−1
Ω ()). Since �Ω is continuous, �−1Ω ()

is closed in  for the induced topology. By Lemma 3.2,  ∪ {0} is closed in ℂm, so that
 is closed in ℂm∖{0}. Hence, �−1Ω () is closed in ℂm∖{0}. Since �Ω is invariant if its
argument is multiplied by a complex non-zero constant, �−1Ω () is saturated and one has
�−1(�(�−1Ω ())) = �−1Ω (). Consequently, the set �(�−1Ω ()) = �̂−1Ω () is closed for the
quotient topology because its inverse image w.r.t. � is closed. This proves the continuity
of �̂Ω.

Moreover, since  is closed and saturated in ℂm∖{0}, �() is closed in ℂℙm−1 and
the compactness of ℂℙm−1 ensures that �() is compact. By continuity of �̂Ω, the image
�̂Ω(�()) is a compact subset of ℝ, hence bounded. Therefore, there exists a constant
C(k, �,,Ω) such that for any g ∈  (k, �,, 1) one has

max
Ω

|g| =
maxΩ |g|
max |g|

≤ C(k, �,,Ω)

and this concludes the proof. �

Proof. (Corollary 2.1)
Since g is non identically zero over  (see Lemma 3.1), we can consider the function

g∕M and we are reduced to the caseM = 1.
For � > 1, the statement is a consequence of the Cauchy’s estimate and of Theorem 2.1

applied to Ω = 1(0) and .
In case � ≤ 1, for any fixed m > 1 one considers the function

gm(z) ∶= g
( �
m
z
)

∶=
+∞
∑

j=1
cjz

j =
+∞
∑

j=1
aj

( �
m
z
)j

analytic in m(0) and belonging to  (k, m,m, 1), where

m ∶= {z ∈ m(0) ∶
�
m
z ∈ }

satisfies cardm > k since  does.
Since the convergence radius of gm is m > 1, the statement holds for this function and

there exists a constant K(k, m,) such that

|cj| ≤ K(k, m,) ∀ j ∈ ℕ,

which implies

|aj| ≤ K(k, m,)
(

m
�

)j
.

This concludes the proof. �
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4. TECHNICAL LEMMAS

The aim of this section is to prove Lemma 3.2. We first recall a few classical points.
The algebraic curve of a polynomial S ∈ ℂ[z,w] is the zero-set

RS ∶= {(z,w) ∈ ℂ2 ∶ S(z,w) = 0} .

and one has the following standard result

Lemma 4.1. For any integer k ≥ 1 and for any polynomial S ∈ (k), there exists a set
S ⊂ ℂ (defined explicitly in Appendix A, see A.1) satisfying cardS ≤ Nk - where
Nk ∈ ℕ is an upper bound depending only of k - and such that over any simply connected
domain D ⊂ ℂ the intersection of the algebraic curve RS with D ×ℂ is the union of at most
k disjoint graphs of holomorphic functions defined over D if and only if D ∩S = ∅.

The proof of this result can be found by putting together known results on algebraic
curves (see e.g. [30]). For the sake of clarity, it is given in appendix A.

Remark 4.1. Following ref. [32], the elements of S are called excluded points.

Remark 4.2. The number of graphs in Lemma 4.1 may be equal to zero, for example if
S(z,w) = z, we have RS = {(z,w) ∈ ℂ2 ∶ z = 0} and the point z = 0 is excluded by
construction (see Appendix A).

Definition 4.1 (Riemann branches and leaves). In the setting of Lemma 4.1, if RS is non-
empty over D, the holomorphic functions whose graphs cover D are algebraic since their
graphs solve the equation S(z,w) = 0 for all z ∈ D. These functions will henceforth be
called the Riemann branches of S over D, whereas their graphs will be referred to as the
Riemann leaves of S over D.

It is a standard fact that, up to constant multiplicative factors, any polynomial S ∈ (k)
can be uniquely factorized as

(4.1) S(z,w) = q(z) Πmi=1(i(z,w))
ji

for some 1 ≤ ji ≤ k, 1 ≤ m ≤ k, where the i’s are non-constant, irreducible, mutually
non-proportional polynomials. Hence, without any loss of generality, we can pass to the
unit sphere in (k) and assume ||q|| = 1 for an arbitrary norm || ⋅ ||.

We denote

(4.2) (z,w) ∶= Πmi=1(i(z,w))
ji

and we have the polynomial product:

(4.3) S(z,w) = q(z)(z,w).

We start by giving the following

Definition 4.2.  = (k, �) ⊂ (k) denotes the set of polynomials S ∈ (k)∖{0} such
that the polynomial  in decomposition (4.3) has no excluded points (definition A.1) in
�(0).
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Remark 4.3. Given S ∈ , by decomposition (4.3) and Definition A.1, the only possible
excluded points for S in �(0) are those at which q(z) = 0. Inside the disk �(0), the
algebraic curve RS is therefore the union of at most k elements that can be either disjoint
holomorphic Riemann leaves of  or vertical lines inℂ2 of the kind z = z0, with q(z0) = 0.
In particular, all the Riemann branches of S ∈  are holomorphic over �(0).

Remark 4.4. The set  of Definition 3.1 is contained in  and, with the notations of The-
orem 1.2, the functions in (k, �) are precisely those associated to the polynomials in .

In order to prove Lemma 3.2, we need the following

Lemma 4.2.  ∪ {0} is closed in (k).

The proof of Lemma 4.2 relies on arguments centered around Montel’s theorem and is
quite technical. It requires some intermediate results, which are stated in the sequel.

We start by considering a sequence {Sn(z,w)}n∈ℕ of polynomials in∪{0}, converging
to a polynomial S ∈ (k). We can assume that S ≢ 0 otherwise there is nothing to prove;
hence we have Sn ≢ 0 for n large enough.

Following decomposition (4.3), we write Sn(z,w) ∶= qn(z)n(z,w) and, by construc-
tion, the sequence of polynomials {qn}n∈ℕ is in the compact unit sphere and admits a con-
vergent subsequence. With slight abuse of notation, in the sequel we shall indicate this
subsequence with the same symbol {qn}n∈ℕ and we shall denote by q̂ its limit, which is not
identically null by construction.

We recall thatS andSn (for n ∈ ℕ) denote the sets of excluded points of S and Sn,
respectively. For r > 0 small enough, we remove from �(0) all open neighborhoods of
radius r around the excluded points of S and consider the following compact set:

(4.4) Er ∶= {z ∈ �−r(0) ∕ |z − z0| ≥ r for z0 ∈S} ⊂ �(0).

Lemma 4.3. There exists r0 = r0(�, k) such that, for any 0 < r ≤ r0, one has Er ≠ ∅ and
there exists an integer n0 = n0(r) such that:

(4.5) Er ∩Sn = ∅ for all n ≥ n0 .

Proof. The fact that Er ≠ ∅ for r sufficiently small is an immediate consequence of Def-
inition 4.4 and of the fact that cardS is bounded by a number depending only on k (see
Lemma 4.1).

As for the second part of the statement, since Sn⟶ S ∈ (k), and qn → q̂ ≢ 0, there
exists a polynomial Ŝ ∈ (k) such that

(4.6) lim
n⟶+∞

Sn(z,w) = lim
n⟶+∞

n(z,w) × lim
n⟶+∞

qn(z) = Ŝ(z,w) × q̂(z).

By applying again decomposition (4.3) to Ŝ we obtain Ŝ(z,w) = q̃(z)(z,w), so that
we can write S(z,w) = q(z)(z,w) by setting

(4.7) q(z) ∶= q̂(z) × q̃(z) .

Therefore, all the roots of q̂ are also roots of q and belong toS . By construction (see also
remark 4.3), all points in Sn are roots of qn(z) = 0. Since qn ⟶ q̂, taking into account
the continuous dependence of the roots of a polynomial on its coefficients expressed in
Theorem B.1, one has that for sufficiently high n the roots of qn must be either r-close to
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the roots of q̂, and hence to some point of S , or outside of the disc of radius 1∕r(0).
Taking r0 < 1∕�, one has 1∕r(0) ⊃ �(0), whence the conclusion. �

We fix 0 < r ≤ r0, with r0 the bound in Lemma 4.3, and we consider a point z⋆ ∈ Er,
hence z⋆ is not an excluded point of S and any solution of Sz⋆ (w) ∶= S(z⋆, w) = 0 must
belong to the image of a Riemann branch of S holomorphic in a neighbourhood of z⋆. We
fix one of these branches and denote it with ℎ. The continuous dependence of the zeros of a
polynomial on its coefficients (Theorem B.1) ensures the existence of a sequence {w⋆n }n∈ℕ
of roots of Sz⋆n (w) ∶= Sn(z

⋆, w) such that

w⋆n ⟶ ℎ(z⋆) .

Lemma 4.3 and Remark 4.3 together with the fact that Sn ∈  for all n ∈ ℕ ensure that,
for any fixed n > n0(r), the point (z⋆, w⋆n ) must belong to the Riemann leaf of one of
the branches of n, denoted ℎn, which is holomorphic over �(0). Hence we have the
pointwise convergence

(4.8) ℎn(z⋆)⟶ ℎ(z⋆) .

We show in the sequel that the sequence {ℎn}n∈ℕ admits a subsequence that converges
uniformly on any compact subset of�(0)∖S to a holomorphic function which extends ℎ
over�(0)∖S . In order to prove this claim, which is fundamental to the proof of Lemma
4.2, we need the following results.

Lemma 4.4. The Riemann branches of S are bounded on the compact sets included in
�(0)∖S .

Proof. By construction, any point ẑ ∈ �(0)∖S is regular for S, hence there exists an
open neighbourhood V ⊂ ℂ of ẑ such that the algebraic curve RS ∩ {V × ℂ} is composed
of at most k graphs of holomorphic functions bounded over V . Since any compact set
included in �(0)∖S can be covered by a finite number of these neighbourhoods, the
claim is proved. �

Lemma 4.5. The sequence {ℎn}n∈ℕ is locally bounded over �(0)∖S .

Proof. If, by contradiction, there exists a compact K ⊂ �(0)∖S such that {ℎn}n∈ℕ is un-
bounded over K, then there exists a sequence {zn}n∈ℕ in K and a strictly increasing function
' over ℕ such that the subsequence {|ℎ'(n)(zn)|}n∈ℕ diverges.

By Definition (4.4),�(0)∖S = ∪r>0 Er, so there exists 0 < r ≤ r0 small enough such
that K ⊂ Er ⊂ �(0)∖S . Moreover, Er is a compact, arc-connected set since it is�−r(0)
without a finite number of open disks. Then, for any n ∈ ℕ it is always possible to construct
a continuous arc:

n ∶ [0, 1]⟶Er with n(0) = z⋆ and n(1) = zn.

We introduce the continuous functions:

 n ∶ [0, 1]⟶ ℝ ,  n(t) ∶= |ℎ'(n)(n(t))| .

Since Szn → Sz uniformly for z ∈ �−r(0), Theorem B.1 ensures that, for all " > 0, there
exists n(") ∈ ℕ such that for all n > n(") and all z ∈ �−r(0), the roots of Szn are either "-
close to the roots of Sz or in the complement of the closed disk1∕"(0). Moreover, Lemma
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4.4 ensures that the roots of Sz are uniformly bounded for all z ∈ Er. We indicate with
wmax(r) the maximal module that the Riemann branches of S can reach on Er and we set

"0(r) =
1

wmax(r) + 1
.

In this setting, we can consider a fixed integer n > n("0(r)) such that:

(4.9)  n(1) >
1
"0
= wmax(r) + 1

and taking (4.8) into account, we also assume that n is high enough to ensure:

(4.10) | n(0) − |ℎ(z⋆)| | = | |ℎ'(n)(z⋆)| − |ℎ(z⋆)| | ≤ |ℎ'(n)(z⋆) − ℎ(z⋆)| < "0 < 1

hence  n(0) < |ℎ(z⋆)| + 1 ≤ wmax(r) + 1.
With (4.9) and (4.10), the intermediate value theorem applied to  n implies that there

exists t⋆ ∈]0, 1[ satisfying

(4.11)  n(t⋆) = wmax(r) + 1 .

But n > n("0(r)) and n(t⋆) ∈ �−r(0), hence ℎ'(n)(n(t⋆)) is either in the complement
of the closed disk 1∕"0 (0) and

(4.12)  n(t⋆) >
1
"0
= wmax(r) + 1

or "0-close to the roots of Sz and

(4.13)  n(t⋆) < wmax(r) + "0 < wmax(r) + 1.

Conditions (4.11), (4.12) and (4.13) are in contradiction and the statement is proved. �

Lemma 4.6. There exists a subsequence of {ℎn}n∈ℕ which converges uniformly on the
compact subsets of �(0)∖S to a Riemann branch of S (still denoted ℎ) extending holo-
morphically ℎ over �(0)∖S .

Proof. With Lemma 4.5 andMontel’s Theorem, it is possible to extract a subsequence - still
denoted {ℎn}n∈ℕ with slight abuse of notation - that converges uniformly on the compact
subsets of�(0)∖S to a function holomorphic over�(0)∖S which is also still denoted
ℎ. Finally, thanks to Lemma B.1 and to the fact that Sn⟶ S, one has S(z, ℎ(z)) = 0 for
any z ∈ �(0). �

Remark 4.5. By the above Lemma, S does not contain any ramification points.

With the help of Lemma 4.6, we are now able to prove Lemma 4.2.

Proof. (Lemma 4.2)
The aim is to prove that the set of excluded points  for  associated to the limit

polynomial S is empty, from which the conclusion follows.
Assume that z0 ∈  . Since  is a finite set, for t > 0 small enough the punctured

disc ̇t(z0) ∶= {z ∈ �(0) ∶ 0 < |z − z0| < t} is included in �(0)∖ and any
branch ℎ of the polynomial  is holomorphic in ̇t(z0). Then, by Laurent’s Theorem and
by Proposition B.1, z0 is either a removable singularity or a pole. We show that the second
possibility does not occur.
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If by contradiction z0 is a pole for ℎ, then limz⟶z0 ℎ(z) is infinite and one can choose
the radius t small enough so that ℎ(z) ≠ 0 for all z ∈ ̇t(z0). Hence the function � ∶= 1∕ℎ
is analytic on the punctured disc ̇t(z0) and it is also bounded since its limit is zero when
z goes to z0. By Riemann’s Theorem on removable singularities, � admits a holomorphic
extension, still denoted �, on the whole disc t(z0) satisfying �(z0) = 0.

Lemma 4.6 ensures that there exists a subsequence {ℎnj}j∈ℕ of Riemann branches for
Snj (actually, by Remark 4.3, the branches ℎnj are analytic over �(0) since Snj ∈ )
which converges uniformly to ℎ on the compact subsets of ̇t(z0) ⊂ �(0)∖S . Con-
sequently, the functions ℎnj do not vanish on any compact subset of the disk t(z0) for j
large enough. This ensures that the functions {�nj}j∈ℕ ∶= {1∕ℎnj}j∈ℕ are holomorphic
on t(z0). Moreover, the sequence {�nj}j∈ℕ converges locally uniformly to � on ̇t(z0).
Since both �nj and � are holomorphic at z0, by the Maximum Principle, this convergence
is actually locally uniform over the whole disc t(z0).

On the one hand, we have �(z0) = 0 and �(z) ≠ 0 for z ∈ ̇t(z0), since in this domain
�(z) = 1∕ℎ(z) and ℎ is holomorphic on ̇t(z0).

On the other hand, the terms of the subsequence {�nj}j∈ℕ ∶= {1∕ℎnj}j∈ℕ are nowhere-
vanishing on t(z0) and �nj is holomorphic in that domain. Consequently, by Hurwitz’s
Theorem on sequences of holomorphic functions, � must be either identically zero or
nowhere null on t(z0).

We have obtained a contradiction and therefore limz⟶z0 ℎ(z) is finite. By applying once
again Riemann’s Theorem on removable singularities, ℎ admits an analytic extension ℎ̃ to
the whole disc t(z0). Moreover, ℎ̃ is a Riemann branch of  in the whole disc t(z0),
since

(z0, ℎ̃(z0)) = lim
z⟶z0

(z, ℎ(z)) = 0 .

It remains to rule out the possibility that z0 is singular because the graphs of two distinct
branches ℎ and l of the limit polynomial  intersect on it. Assume that ℎ(z0) = l(z0).
By Lemma 4.6 and by the previous arguments, there exist two subsequences {ℎnj}j∈ℕ and
{lnj}j∈ℕ of branches associated to {nj}j∈ℕ that approach respectively ℎ and l locally
uniformly over t(z0).

We first notice that ℎnj is distinct from lnj for j large enough, otherwise there exists a
subsequence of common branches ℎnj =lnj for nj up to infinity which converges locally
uniformly in t(z0) respectively to ℎ and l. Consequently ℎ = l over t(z0), which
contradicts the assumption that ℎ and l are distinct. Moreover, since Rnj

is composed of
distinct regular leaves over t(z0) for any j ∈ ℕ, the functions ℎnj− lnj never vanish over
t(z0).

Consequently, Hurwitz’s theorem ensures that the sequence of holomorphic functions
{ℎnj− lnj}j∈ℕ converges to a limit which either never vanishes or is identically zero over
t(z0). Here limj→+∞(ℎnj−lnj )(z0) = (ℎ−l)(z0) = 0, so ℎ = l everywhere overt(z0),
which is again in contradiction with the assumption that ℎ and l are distinct.

Therefore, we have proved that the algebraic curve of the limit polynomial  is com-
posed of disjoint and regular Riemann leaves over a neighborhood of z0. Since the above
arguments hold for any z0 ∈S , the algebraic curve R is composed of distinct leaves over
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�(0) and the branches of  are globally holomorphic over �(0), consequently  = ∅
(see Remark 4.3). �

Lemma 4.2 is the cornerstone for the proof of Lemma 3.2.

Proof. (Lemma 3.2)
We start by proving the closure of∪ {0} in (k) and consider a sequence {Sn}n∈ℕ in

∪{0}which converges to a limitS ∈ (k). One hasS ∈ ∪{0}, since∪{0} ⊂ ∪{0}
and  ∪ {0} is closed by Lemma 4.2.

By hypothesis, for any fixed n ∈ ℕ there exists a Riemann branch gn(z)which is analytic
on �(0) and satisfies

(4.14) Sn(z, gn(z)) = 0 , gn(0) = 0 , maxz∈
|gn(z)| = 1 .

If S ≡ 0 there is nothing to prove.
If S ≢ 0, we claim that {gn}n∈ℕ has a subsequence that converges uniformly on the

compact subsets of �(0) to a branch gS of S having the desired properties.
In fact, since S ∈  ∪ {0}, the elements of the set S are the roots of q(z) = 0.

Consequently, cardS ≤ k and card > k ensures that there exists z⋆ ∈ ∖S such
that {gn(z⋆)}n∈ℕ is bounded. Up to the extraction of a subsequence, gn(z⋆) converges
to a complex value w⋆. Moreover, since z⋆ is not an excluded point of S ∈ , we can
ensure that (z⋆, w⋆) belongs to a Riemann leaf of R which is associated to a holomorphic
Riemann branch over �(0), denoted gS .

By the same arguments used in the proofs of Lemmas 4.5 and 4.6, the sequence {gn}n∈ℕ
admits a subsequence which converges uniformly on the compact subsets of �(0)∖S to
a Riemann branch fS associated to S. The holomorphy of fS over �(0) (since S ∈ )
and the Maximum Principle imply that the convergence is actually locally uniform on the
whole set �(0). Then, by the uniqueness of the limit, we have gS (z⋆) = fS (z⋆), which
implies gS ≡ fS over �(0) because S ∈ . This yields max |gS | = 1 and gS (0) = 0,
hence gS meets the requirements of Definition 3.1 and S ∈ .

Finally, it remains to prove that the function �Ω in Lemma 3.2 is continuous. Since
{gn}n∈ℕ converges locally uniformly to gS in �(0), we can write

(4.15) lim
n⟶+∞

|

|

|

|

max
z∈′

|gS (z)| − maxz∈′
|gn(z)|

|

|

|

|

≤ lim
n⟶+∞

(

max
z∈′

|gS (z) − gn(z)|
)

= 0 ,

for any compact ′ ⊂ �(0). By taking ′ ≡ Ω ⊂ �(0), we have

�Ω(S) ∶= max
z∈Ω

|gS (z)| = lim
n⟶+∞

(

max
z∈Ω

|

|

gn(z)||

)

=∶ lim
n⟶+∞

(

�Ω(Sn)

)

,

which implies that �Ω is continuous. This concludes the proof of Lemma 3.2.
�

APPENDIX A. PROOF OF LEMMA 4.1

We start by stating two standard results of algebraic geometry.
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Lemma A.1. For any couple of positive integers k1, k2 consider two non-zero irreducible,
non-proportional polynomials Q1 ∈ (k1) and Q2 ∈ (k2). Then the system Q1(z,w) =
Q2(z,w) = 0 has at most k1 × k2 solutions.

Lemma A.2. For k ≥ 2, let Q(z,w) ∈ (k) be an irreducible polynomial. Then

card {z ∈ ℂ | ∃w ∈ ℂ ∶ Q(z,w) = )wQ(z,w) = 0} ≤ k .

The first Lemma is a simple corollary of Bézout’s Theorem (see e.g. [29], Th. 3.4a),
while the second Lemma is also known (see e.g. Proposition 1 and its proof in [30]).

With these tools, we can now give the proof of Lemma 4.1.

Proof. The lemma is trivial if S depends only on w since we have S = ∅ in this case
because RS is composed of a finite number of Riemann branches which are horizontal lines
over the z-axis.

If S ∈ (k) depends only on z, then RS = {(z,w) ∈ ℂ2 ∶ z = z0, with S(z0) = 0}
and the thesis holds true since there are only vertical lines at the distinct roots of S (whose
number is bounded by k) and no Riemann branches.

Let’s now examine the case in which S depends on both variables where, up to multi-
plication by constant factors, any polynomial S ∈ (k) can be factorized uniquely as

(A.1) S(z,w) = q(z) Πmi=1(Si(z,w))
ji

for some 1 ≤ ji ≤ k, 1 ≤ m ≤ k and the Si are non-constant, irreducible, mutually
non-proportional polynomials.

We denote

(A.2) (z,w) = Πmi=1(Si(z,w))
ji and ̃(z,w) = Πmi=1Si(z,w)

and 
z
(w) ∶= (z,w), ̃z(w) ∶= ̃(z,w) hence ̃z ∈ ℂ[z][w] - with deg(̃z) = l

l ∈ {1,… , k} - and al(z) is the corresponding leading coefficient.
We notice that decomposition A.1 and definition A.2 ensure that RS is the union of the

vertical lines z = z∗ with q(z∗) = 0 and of the Riemann surface R , moreover the Riemann
surfaces R and R̃ are identical.

DefinitionA.1 (Excluded points). Taking decompositionA.1 into account, we defineS ⊂
ℂ as the set of those points z0 ∈ ℂ that satisfy at least one of the following conditions

(1)
q(z0) = 0 (Vertical lines)

(2) There exists w0 ∈ ℂ such that for some i ∈ {1, ..., m}
{

Si(z0, w0) = 0
)wSi(z0, w0) = 0

(Ramification points)

(3) There exists w0 ∈ ℂ such that for some i, j ∈ {1, ..., m}, i ≠ j
{

Si(z0, w0) = 0
Sj(z0, w0) = 0

(Intersection of graphs)

(4)
al(z0) = 0 (Poles)
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Henceforth, we prove that over ℂ∖S the conclusions of Lemma 4.1 are valid and that
we can choose the set S as the excluded points for S.

To see this, we fix a point z∗ ∈ ℂ∖S .
By negation of condition (1), we have q(z) ≠ 0 in the vicinity of z∗, hence the vertical

lines are excluded from the algebraic curve RS in the vicinity of z∗.
Then, we also notice that for any value w∗ such that 

z∗
(w∗) = 0, by decomposi-

tion (A.1) and negation of condition (3), one must have Si(z∗, w∗) = 0, for exactly one
i ∈ {1, ..., m}. Hence, by negation of condition (2) at (z∗, w∗), we can apply the im-
plicit function theorem and there exists an open neighbourhood V around (z∗, w∗) such
that RS ∩V = R ∩V = R̃ ∩V = RSi ∩V is the graph of an unique holomorphic function.

Finally, the negation of condition (4) in a neighbourhood of z∗ ensures that the polyno-
mial ̃z admits l ≤ k complex roots counted with multiplicity for z in the vicinity of z∗.
With z∗ ∈ ℂ∖S , a direct computation ensures that the discriminant of ̃z∗ is non-zero
since ̃z∗ and its derivative cannot have common roots, hence ̃z admits simple roots for
z in the vicinity of z∗.

This implies the existence of a neighborhood V of z∗ ∈ ℂ∖S such that the algebraic
curve RS ∩V ×ℂ = R̃ ∩V ×ℂ is the union of exactly l ≤ k disjoint graphs of holomorphic
branches.

Hence, over a simply connected domain D ⊂ ℂ∖S , branch cuts can be avoided and
the Riemann surface RS is the finite union of at most k disjoint graphs of holomorphic
functions.

Conversely, consider a simply connected complex domain D such that RS ∩ D ×ℂ is the
finite union of l ∈ {1,… , k} disjoint graphs of functions ℎ1(z),… , ℎl(z) holomorphic
over D.

For a fixed point z∗ ∈ D, the polynomial Sz∗ admits l roots, and decomposition A.1
ensures that we have q(z∗) ≠ 0. Moreover, the discriminant of S̃z might be zero only at a
finite number of points (since the discriminant is itself a polynomial) but we always have
l roots for S̃z with z ∈ D as a consequence of our assumption that the Riemann leaves
are distinct. Hence, the roots are simple and the degree of S̃z is constant equal to l for all
z ∈ D. Consequently, the discriminant of ̃z is non-zero and al(z) ≠ 0 for all z ∈ D.

Moreover, for any i, j ∈ {1, ..., m}, i ≠ j and for any w ∈ ℂ, we have either Si(z∗, w) ≠
0 or Sj(z∗, w) ≠ 0 otherwise two distincts Riemann leaves associated respectively to Si
and Sj would intersect.

Finally, we have the decomposition ̃(z,w) = al(z)(w − ℎ1(z))… (w − ℎl(z)) for
(z,w) ∈ D×ℂ, and for z ∈ D we can check that Sz and its derivative cannot have common
roots under our assumptions. Hence, for any w ∈ ℂ and any i ∈ {1, ..., m}, we have either
Si(z∗, w) ≠ 0 or )wSi(z∗, w) ≠ 0.

Then, we prove that the cardinality of S is bounded by a quantity depending only on
k.

Conditions (1) and (4) are polynomial equations of degree less than or equal to k (q
factorizes all the terms in z and al(z) is the coefficient of the term of highest degree in
w), hence they have at most k solutions. By Lemma A.1, condition (2) is satisfied at most
at k points. Since the index i in (2) can assume at most k values, this condition yields k2
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singularities. In the same way, Lemma A.2 says that condition (3) is satisfied at most at k2
points. Since the indices i, j in condition (3) can each take at most k values and i ≠ j, we
get k2

(k
2

)

solutions. The sum of the previous estimates yields a bound depending only on
k. �

APPENDIX B. TOOLS OF ALGEBRAIC GEOMETRY AND APPLICATIONS

B.1. On the dependence of the roots of a polynomial on its coefficients. It is a standard
fact in the study of algebra that the roots of a monic complex polynomial of one variable de-
pend continuously on its coefficients. The same result holds true for non-monic polynomials
once one takes solutions at infinity into account by means of the compact identification of
ℂ ∪ {∞} with the Riemann sphere. Without entering into too many details, we state the
following result, whose proof can be found in [18].

Theorem B.1. Let P (w) = anwn + an−1wn−1 + ...+ a0 be a non-zero complex polynomial
of degree k ≤ n. Let �1, ..., �r be its roots in ℂ with m1, ..., mr their respective multiplicities.
Fix " > 0 small enough and denote with "(�1), ...,"(�r) the disjoint disks of radius "
centered at �1, ..., �r, such that "(�j) ⊂ 1∕"(0) for all j ∈ {1, ..., r}. Then, there exists
�(") > 0 such that every complex polynomialQ(w) = bnwn+bn−1wn−1+ ...+b0 satisfying
|bj −aj| < �(") for all j ∈ {0, ..., n} has mi roots (counted with multiplicity) in each"(�i)
for i ∈ {1, ..., r} and deg(Q) − k roots belonging to the complement of 1∕"(0).

This theorem formalizes the intuitive idea that, if one takes a polynomial

Q(w) = anwn + an−1, wn−1 + ... + a0, with an ≠ 0

and makes ak+1, ak+2, ..., an tend to zero while ak ≠ 0, then n − k solutions "continuously
go to infinity" and k solutions, counted with their multiplicities, "stay finite."

B.2. Application to sequences of algebraic functions.

Lemma B.1. Take an open bounded set U ⊂ ℂ, let {gn}n∈ℕ be a sequence of holomorphic
algebraic functions on U associated to polynomials of degree k ∈ ℕ and converging in U
to a holomorphic function g. Then g is an algebraic function. Moreover, there exists a
sequence of polynomials {Qn ∈ (k)}n∈ℕ solving the graphs of the functions in {gn}n∈ℕ
which converges to a polynomial Q ∈ ℂ[z,w] that solves graph(g) everywhere in U.

Proof. For any n ∈ ℕ, the graph of the function gn satisfies Sn(z, gn(z)) = 0 for some
polynomial Sn ∈ (k)∖{0} and the equation Sn(z, gn(z)) = 0 is invariant when Sn is
multiplied by any non-zero constant. Without loss of generality, one can choose an arbitrary
norm || ⋅ || in (k) ≃ ℂm, with m = (k + 1)(k + 2)∕2, and consider the sequence of
polynomials {Qn}n∈ℕ associated to {gn}n∈ℕ by defining, for any n ∈ ℕ:

(B.1) Qn(z,w) ∶=
Sn(z,w)
||Sn||

with Qn(z, gn(z)) = 0 and Qn ∈ Sm

where Sm denotes the unitary sphere in (k) ≃ ℂm. By compactness of Sm, there exists
a subsequence {Qnj}j∈ℕ converging to a polynomial Q ∈ Sm. Moreover, if we denote
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Qznj (w) ∶= Qnj (z,w) and Q
z(w) ∶= Q(z,w) - hence Qznj and Q

z belong to (k) for any
fixed z ∈ ℂ - we have the convergence

(B.2) lim
j⟶+∞

||Qz
∗

nj
−Qz

∗
‖ = 0

for any fixed z∗ ∈ U and with respect to any norm in (k).
The convergence in (B.2) and Theorem B.1 imply that the sequence {gnj (z

∗)}j∈ℕ ap-
proaches a root of Qz∗ for any z∗ ∈ U. Since gnj converges over U to g, then g(z) is a
solution of Qz(w) = 0 for any z ∈ U.

Finally, since g is holomorphic over U, it is a Riemann branch of Q ∈ (k) over U. �

B.3. Non-existence of essential singularities for algebraic functions.

Proposition B.1. An algebraic function f cannot have any essential singularity.

Proof. By Lemma 4.1 and decomposition A.1, the singularities of f are included in the
set  of excluded points (see A.1). Hence, suppose by contradiction that z0 ∈  is
an essential singularity. Since the cardinality of  is finite, z0 is isolated. Then, the
Casorati-Weierstrass Theorem holds and, for any fixed w0 ∈ ℂ, one can build a sequence
{zk}k∈ℕ converging to z0 and such that

lim
k⟶+∞

f (zk) = w0 .

But w0 is also a root of the one-variable polynomial 
z0 (w) ∶= (z0, w) since f (z) is a

Riemann branch of  in a punctured neighborhood centered at z0 and


z0 (w0) ∶= (z0, w0) = lim

k⟶+∞
(zk, f (zk)) = 0.

This construction holds for any w0 ∈ ℂ and the polynomial 
z0 is null but, necessarily,

(z−z0) is a factor of  and this is not possible with decomposition A.1. Hence, f (z) cannot
have an essential singularity at z0. �
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