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Abstract

We construct a local Nekhoroshev-like result of stability with sharp con-
stants for the planar three-body problem, both in the planetary and in the
restricted circular case, by using the periodic averaging technique. Our con-
structions can be generalized to any near-integrable hamiltonian system whose
unperturbed hamiltonian is quasi-convex. The dependence of the constants
on the analyticity widths of the complex hamiltonian is carefully taken into
account. This allows for a deep analytical understanding of the limits of
such techniques in insuring Nekhoroshev stability for high magnitudes of the
perturbation and suggests hints on how to overcome such obstructions in
some cases. Finally, two examples with concrete values are considered, one
for the planetary case and one for the restricted case.

1. Introduction

It is well known since the end of the 19th century that the problem of
n point masses mutually interacting through the sole gravitational force is
non-integrable for n ≥ 3 (see [9] for a detailed historical overview on this
subject). Coming to more recent times, the birth of KAM theory in the
mid-twentieth century led to new mathematical efforts in order to establish
whether quasi-periodic motions persisted in the n-body problem for suitable

∗Corresponding author: santiago.barbieri@math.unipd.it
1This work has been developed under the auspices of the European Research Council in

the framework of the H2020-ERC Starting Grant 2015 project 677793: Stable and Chaotic
Motions in the Planetary Problem.

2This material is based upon work supported by the National Science Foundation under
Grant No. 1440140, while the author was in residence at the Mathematical Sciences
Research Institute in Berkeley, California, during the fall of 2018.

Preprint submitted to Elsevier June 7, 2019



perturbative parameters. In particular, important results of stability based on
KAM theory were achieved in [1] for the planar three-body problem, in [34] for
the spatial case and in [10], [13], [30] for the general n-body problem. Besides,
numerical studies (see e.g. [20]) show that the motion of the outer Solar
System stays stable for timescales which exceed the lifetime of the universe, so
that purely mathematical investigations on the stability of the major planets
in the framework of the n-body problem make sense. However, the direct
application of KAM theorems to the n-body problem, with n ≥ 3, usually
leads to pessimistic estimates on the maximal size that the perturbation can
reach in order for such results to hold (see [6] for a recent discussion on this
issue). On the other hand, good estimates can be obtained when considering
the invariance of particular tori under the dynamics of a suitably truncated
perturbation, as it is done in [7].
Another possibility is to apply the less-demanding Nekhoroshev theorem to
such problem in order to insure that the perturbed system stays close to the
integrable one over exponentially long times. Indeed, though leading to a
weaker, non-perpetual form of stability, Nekhoroshev theorem requires less
strict conditions and yields bounds on the perturbative parameters which
are closer to realistic ones (see e.g. [27]). Moreover, such result holds on
open sets. Two different proofs of such statement exist: the original one by
Nekhoroshev [26] and the one developed by Lochak in [21]. The first approach
insures a slow rate of diffusion of the action variables over exponentially long
times under the generic assumption that the unperturbed system satisfies a
condition known as steepness. Such result has been improved in [2] and in [32]
for the convex case and in [19] for the original steep case. The second proof
works under the hypothesis that the unperturbed hamiltonian is quasi-convex
and exploits such geometrical property in order to insure exponential times
of stability in the neighborhood of periodic orbits of the unperturbed system.
A global result of stability is obtained once one covers the entire phase space
with such neighborhoods with the help of Dirichlet’s approximation theorem.
Improvements in this second approach can be found in [5] and [23], whereas
a brief overview on both proofs can be found in [18] and [28].
As for the applications to celestial mechanics, one of the authors carefully
derived in [27] estimates of stability over exponentially long times for the
three-body planetary problem around a periodic torus. In the case of the 5 : 2
resonance, stability holds for a time comparable with the age of the Solar
System if the ratio for the mass of the greater planet on the Sun mass does
not exceed 10−13 (the real value is actually 10−3 in the Solar System). On the
other hand, numerical-assisted studies on Nekhoroshev stability, with realistic
magnitudes for the perturbation, have been achieved by Giorgilli, Locatelli
and Sansottera in [15] and [16] for a suitably truncated three or even four
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body hamiltonian in the neighborhood of an invariant torus. An application
leading to a remarkably good upper bound on the perturbative parameter
(ε < 10−6) in the non-resonant restricted, circular, planar case has also been
considered by Celletti and Ferrara in [8]. Finally, an interesting discussion on
the threshold on the magnitude of the perturbation for Nekhoroshev theorem
to hold can be found in [4].

With respect to the present work, we intend to reach multiple goals which
can be summarized as follows:

1. The first aim consists in obtaining a Nekhoroshev-like stability result
with sharp constants for the planar three-body problem with the help
of refined estimates on hamiltonian vector fields. Actually, our proof
can be developed for any near-integrable hamiltonian system.

2. Secondly, we want to compare such result on the planetary three-body
problem to those of Niederman in [27] and see if sharp estimates lead
to improvements in the time of stability and in the maximal allowed
size for the perturbation.

3. With the help of the previous results, we want to be able to understand
which are the analytical obstacles in this reasoning that prevent one
from reaching physical values for the perturbation in the planetary case
and conjecture how to overcome them in some cases.

4. Finally, we will consider an application of the previous results to the
restricted, circular three-body problem as modeled in [7] and [8]; as in
the previous case, this will allow for a deeper understanding of the limits
of the theory we make use of and, moreover, will open the possibility for
reaching realistic values in the perturbative parameters once suitably
powerful numerical tools are implemented.

The authors conjecture that the deadlocks encountered by the theory in such
framework are general and can be considered as fundamental in any applica-
tion of Nekhoroshev theory to finite-dimensional systems close to periodic
integrable orbits.

The paper is structured as follows: in paragraph 2 we introduce notations
and in section 3 the Nekhoroshev stability of the plane, planetary three-body
problem is investigated with sharp techniques leading to sharp constants.
Chapter 4 is devoted to an application of our previous result to the restricted,
circular, planar three-body problem, whereas section 5 contains applications
to concrete examples.
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2. Notations

In this section, we give some definitions that will be used throughout this
work.
In order for the calculations which will appear in the next chapters to be
carried on, one must consider the following sets.

Definition 1. We define the real balls

SI0(ρ) := {I ∈ R : |I − I0| < ρ} ,
Bx0,y0(ξ) := {(x, y) ∈ R2 : (x− x0)2 + (y − y0)2 < ξ2}

(1)

and the complex domain

Dρ,r,s,ξ,u := {(I1, I2, ϑ1, ϑ2, x1, x2, y1, y2) ∈ C8 :

∃ I∗j ∈ S0(ρ) such that
∣∣Ij − I∗j ∣∣ < r, j ∈ {1, 2} ,

<e(ϑ1, ϑ2) ∈ T2 , |=m(ϑj)| < s, j ∈ {1, 2} ,
∃(x∗j , y∗j ) ∈ B0,0(ξ) such that∣∣xj − x∗j ∣∣ < u,

∣∣yj − y∗j ∣∣ < u, j ∈ {1, 2}} .

(2)

For the sake of simplicity, since the quantities we will deal with in the sequel
are just r, s and u, the last set will often be denoted by making use of some
shorthand notations, namely

Dr,s,u := Dρ,r,s,ξ,u ,
Dα−β := Dr(α−β),s(α−β),u(α−β) , 0 ≤ β ≤ α

Dα,β := Dαr,αs,βu .
(3)

Now, let F be a continuous scalar function of many complex variables bounded
in an open domain A.

Definition 2. We denote the sup-norm of F with

|F |A := sup
z∈A
|F (z)| .

A natural extension of this definition applies when considering a continuous
vector-valued function v : A ⊂ Cn −→ Cm .

Definition 3. The sup-norm for v is defined as follows:

|v|A := sup
j∈{1,...,m}

∣∣vj∣∣A := sup
j∈{1,...,m}

sup
z∈A
|vj(z)| .
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The shorthands

|·|r,s,u := |·|Dr,s,u , |·|α−β := |·|Dα−β , |·|α,β := |·|Dα,β

will often be used both for functions and vector fields.
Let now M ⊂ C8 be a symplectic complex manifold with local Darboux
coordinates (Ij, ϑj, xj, yj), j ∈ {1, 2}, for the Liouville form

ω =
2∑
j=1

dIj ∧ dϑj +
2∑
j=1

dxj ∧ dyj

and F a hamiltonian function defined on M with an associated symplectic
gradient XF . The following anisotropic norms turn out to be particularly
useful when dealing with analytic vector fields whose analyticity widths r, s, u
have different magnitudes.

Definition 4. To any holomorphic hamiltonian vector field XF defined in
Dr,s,u ⊂M we associate the anisotropic norms

||XF ||r,s,u := max
j∈{1,2}


∣∣∣XIj

F

∣∣∣
r,s,u

r
,

∣∣∣Xϑj
F

∣∣∣
r,s,u

s


and

|||XF |||r,s,u := max
j∈{1,2}

{∣∣Xxj
F

∣∣
r,s,u

u
,

∣∣Xyj
F

∣∣
r,s,u

u

}
.

Finally, we set some notations that will be used in the next sections when
dealing with hamiltonian flows.

Definition 5. The symplectic flow at time t, associated to a hamiltonian
function F , acting on a set D is denoted with Λt

F (D) and, if such flow has
period T , the average on Λt

F of any continuous function G is indicated with

〈G〉F :=
1

T

∫ T

0

G ◦ Λt
F dt .

With the definitions above, we are now ready to build up a suitable hamiltonian
framework for the planetary three-body problem.
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3. The plane, planetary three-body problem

3.1. Hamiltonian framework and resonant decomposition

From a mathematical point of view, the planetary three-body problem
consists of three points of masses mj, j ∈ {0, 1, 2}, which mutually interact
through the sole gravitational force. Throughout this work, the mass m0 of
the first body is assumed to be much greater than m1 and m2; for example,
when considering a mathematical simplified model of the Solar System, m0

represents the Sun mass whereas m1,m2 are the masses of the two major
planets, i.e. Jupiter and Saturn.
By choosing the center of mass O as the origin of an intertial frame, the
position of the j-th body is given by the vector

uj := (uj1, uj2, uj3)† .

With this choice of coordinates, the planetary three-body hamiltonian reads

Hinit.(ũ, u) :=
2∑
j=0

||ũj||2

2mj

−GN

∑
0≤j<k≤2

mjmk

||uj − uk||
, (4)

where
ũ := mju̇j = (ũj1, ũj2, ũj3)

are the momenta conjugated to uj for the symplectic form

ω :=
2∑
j=0

3∑
k=1

dũjk ∧ dujk .

and GN is Newton’s gravitational constant.
The Jacobi system of coordinates turns out to be particularly useful when
studying the three-body problem. Its detailed construction may be found,
for example, in the second chapter of volume I of Poincaré’s Leçons [31] or
in [12] for a modern presentation. Here, we just give the explicit expression
which links the Jacobi coordinates to the old ones

r0

r1

r2

 :=


1 0 0

−1 1 0

−σ0 −σ1 1



u0

u1

u2

 = A


u0

u1

u2

 , (5)

where we have introduced the quantities

σ0 :=
m0

m0 +m1

, σ1 :=
m1

m0 +m1

. (6)
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The transformation can be symplectically completed for the momenta and
yields 

r̃0

r̃1

r̃2

 :=
(
A†
)−1


ũ0

ũ1

ũ2

 =


1 1 1

0 1 σ1

0 0 1



ũ0

ũ1

ũ2

 . (7)

If we denote

µ1 :=
m0m1

m0 +m1

, µ2 :=
(m0 +m1)m2

m0 +m1 +m2

β1 := m0 +m1 , β2 := m0 +m1 +m2 ,

(8)

then the three-body hamiltonian expressed in Jacobi coordinates assumes the
following form

HJ(r, r̃) =
2∑
j=1

||r̃j||2

2µj
−GN

2∑
j=1

µjβj
||rj||

+GNm2

(
β1

||r2||
− m0

||r2 + σ1r1||
− m1

||r2 − σ0r1||

)
.

(9)

The first part of the hamiltonian describes the keplerian motion of two bodies
of masses µj around a central attractor of mass βj, whereas the second row
has a much smaller magnitude and can be treated as a perturbation. Indeed,
by defining

K(r̃j, rj) :=
2∑
j=1

||r̃j||2

2µj
−GN

2∑
j=1

µjβj
||rj||

, (10)

P (rj) := GNm2

(
β1

||r2||
− m0

||r2 + σ1r1||
− m1

||r2 − σ0r1||

)
(11)

and

ε := max
j∈{1,2}

{εj} := max
j∈{1,2}

{
mj

m0

}
,

it is straightforward to see that∣∣∣∣ P (rj)

K(r̃j, rj)

∣∣∣∣ = O(ε) .

In the case of the Sun-Jupiter-Saturn system one has ε ∼ 10−3.
As it is well known (see e.g. [3] for a detailed explanation), the unperturbed
keplerian problem described by hamiltonian K1 satisfies the hypotheses of
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Arnold-Liouville integrability theorem. Namely, for negative values of the
total energy, its trajectories in the configuration space are two fixed ellipses
(labeled with an index j ∈ {1, 2}). The semimajor axes and eccentricities
are denoted, respectively, with aj and ej and the position of the orbit with
respect to a plane of reference is described by the three Euler angles which, in
this particular case, are the longitude of the ascending node Ωj , the argument
of periapsis ωj and the inclination ιj . The position of a body along its elliptic
trajectory is determined once its real anomaly fj is given. We denote with nj
the mean motion (frequency of the real anomaly) of the j-th body and we
define the mean anomalies

Mj := nj(t− t0) ,

which are related to the eccentric anomalies uj by Kepler’s equation

Mj = uj − ej sinuj .

As a consequence of Arnold-Liouville integrability theorem, a system of
action-angle and cartesian coordinates (Λj, λj, xj, yj, pj, qj), j ∈ {1, 2}, known
as Poincaré’s elliptic variables, can be introduced and reads

Λj := µj
√
GNβjaj

λj := Mj + ωj + Ωj

xj + iyj :=
[
2Λj

(
1−

√
1− e2

j

)]1/2

exp[−i(ωj + Ωj)]

pj + iqj :=
[
2Λj

√
1− e2

j(1− cos ιj)
]1/2

exp(−iΩj)

. (12)

In such frame, the planetary three-body hamiltonian takes the form (the
superscript p stands for Poincaré)

Hp(Λj, λj, xj, yj, pj, qj) = Hp
K(Λj) + εHp

P (Λj, λj, xj, yj, pj, qj) , j ∈ {1, 2} ,
(13)

and the Keplerian part just depends on the actions Λj

Hp
K(Λ) := −G2

N

2∑
j=1

β2
jµ

3
j

2Λ2
j

. (14)

The perturbation can be explicitly computed by inserting system (12) into
(11). For more details about the Poincaré variables, see e.g. [14].
For ε = 0, the phase space of the unperturbed system is foliated with invariant
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tori. Now, choose two fixed actions Λ0
1 and Λ0

2 corresponding to a resonant
frequency vector ω := (ω1, ω2) for the unperturbed system, i.e.

ω1

ω2

=
p

q
,

with p and q two positive integers. We are interested in the behaviour of the
planetary three-body hamiltonian in the neighborhood of the resonant torus
corresponding to these frequencies, so we consider the translation(

I1

I2

)
:=

(
Λ1 − Λ0

1

Λ2 − Λ0
2

)
(15)

and we compute a Taylor’s developement of Hp
K with initial point (I1, I2) =

(0, 0).
As a matter of notation, in the sequel we shall often use the shorthand
(I, ϑ, x, y, p, q) to denote (I1, I2, ϑ1, ϑ2, x1, x2, y1, y2, p1, p2, q1, q2).
Now, we restrict to the planar case (p, q) = (0, 0), so that the complete
hamiltonian assumes the form

H(I, ϑ, x, y) =Hkep(I) + εHP (I, ϑ, x, y)

=Hkep(0) + 〈ω, I〉+ G(I) + εHP (I, ϑ, x, y) ,
(16)

where in the second line we have performed a Taylor expansion and G(I)
denotes the remainder of order 2 in the actions.
If we denote

h(I) := 〈ω, I〉 ,

the hamiltonian can be splitted into a resonant part g0 and a non-resonant
part f0

g0(I, ϑ) := G(I) + ε 〈HP (I, ϑ, x, y)〉h , (17)

f0(I, ϑ) := εHP (I, ϑ, x, y)− ε 〈HP (I, ϑ, x, y) 〉h (18)

which, from their very definitions, satisfy 〈f0〉h = 0 and {h, g0} = 0.
As we shall see in the next paragraph, our purpose consists in reducing the
size of f0 with the help of some sharp techniques of perturbation theory.

3.2. Analyticity widths, convexity and initial estimates

It is well known that hamiltonian (16) is analytic in some complex domain
and, as we shall see later on, a good knowledge on the analyticity widths
is crucial in establishing the limits of the theory we deal with. Here, we
rely on the recent and important work by Castan (see ref. [6]) in which
explicit estimates for the magnitude of hamiltonian (16) in its domain of
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analyticity are found. We stress the fact that in [6] the analyticity of the
complete hamiltonian is taken into account, without making any truncation,
so that one is left with estimates on the analyticity widths which take into
account all the singularities that function (16) encounters in the complex
field. Explicit values will be considered in paragraph 5; here, we shall just
assume that hamiltonian (16) is analytic in a domain Dρ,4r,4s,ξ,4u for some
(ρ, r, s, ξ, u) ∈ R5. Furthermore, since the unperturbed hamiltonian (14) is
continuous and convex on the bounded domain we are considering, for all
couples (I1, I2) ∈ SI(4r)× SI(4r) the eigenvalues %1(I), %2(I) of the hessian
matrix D2Hkep(I) satisfy

|%1|SI(4r) + |%2|SI(4r) ≤ K

min{|%1|SI(4r), |%2|SI(4r)} ≥ κ
,

where κ,K are two positive real constants which can be computed explicitly
since the expression for Hkep is explicit. As we shall see in paragraph 3.3,
convexity plays a crucial role in insuring stability.
Finally, we estimate the sizes of functions and vector fields by making use of
the Cauchy inequalities:

|f0|4 := |εHP − ε〈HP 〉h|4 ≤ 2ε |HP |4 , |g0 − G|4 := |ε〈HP 〉h|4 ≤ ε |HP |4

||Xf0||3 := max
j∈{1,2}


∣∣∣XIj

f0

∣∣∣
3

r
,

∣∣∣Xϑj
f0

∣∣∣
3

s

 ≤ |f0|4
rs

=: η0

|||Xf0|||3 := max
j∈{1,2}

{∣∣Xxj
f0

∣∣
3

u
,

∣∣Xyj
f0

∣∣
3

u

}
≤ |f0|4

u2
=: Ξ0

||Xg0 −XG||3 := max
j∈{1,2}


∣∣∣XIj

g0−G

∣∣∣
3

r
,

∣∣∣Xϑj
g0−G

∣∣∣
3

s

 ≤ |g0 − G|4
rs

=: γ0

|||Xg0 −XG|||3 := max
j∈{1,2}

{∣∣Xxj
g0−G

∣∣
3

u
,

∣∣Xyj
g0−G

∣∣
3

u

}
≤ |g0 − G|4

u2
≤=: Γ0

||XG||3 :=

∣∣∣Xϑj
G

∣∣∣
3

s
:= δ

.

(19)

Notice that since XG has an explicit expression in the case we are considering,
it is directly estimated without making use of the Cauchy inequalities.
As we see from the estimates above, u =

√
rs is a natural choice for the

analyticity width in the cartesian variables. However, we want to stay as sharp
as possible, so choose to leave u as a free parameter and we set β :=

√
rs/u.
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With this setup, we can now define three real functions υ0,Υ0, ζ0 : R −→ R
which depend on the parameters η0,Ξ0, γ0,Γ0, δ defined in (19) and act as
follows:

υ0(x) := (Tx)2 η0χ0 + Tx2Θ0(2η0 + 2γ0 + δ) +
Tx

2
χ0 +

(
TxΞ0

β

)2
χ0

η0

+Θ0x

(
1 +

γ0

η0

+
δ

η0

)
+ 2

Tx2Ξ0Θ0

β2

(
Ξ0

η0

+
Γ0

η0

)
,

(20)

Υ0(x) :=β2 (Txη0)2 χ0

Ξ0

+ β2Tx2η0Θ0

(
2
η0

Ξ0

+ 2
γ0

Ξ0

+
δ

Ξ0

)
+
Tx

2
χ0

+Θ0x

(
1 +

Γ0

Ξ0

)
+ (TxΞ0)2 χ0

Ξ0

+ 2Tx2Θ0(Ξ0 + Γ0) ,

(21)

ζ0 : x 7−→Tx

2
max{γ0 + δ,Γ0}+ Θ0x , (22)

where χ0 and Θ0 are two real constants which read

χ0 := max{Ξ0 + Γ0, η0 + γ0 + δ} , Θ0 := max

{
TΞ0

2
,
T η0

2

}
. (23)

In the sequel, υ0,Υ0 will describe the decreasing of the vector field associated
to the non resonant perturbation, while ζ0 is related to the decreasing of the
non-resonant perturbation itself.
With the construction above, we can exploit the convexity of the integrable
part of the hamiltonian in order to obtain a theorem that insures stability in
the action variables for a suitably long time. To do this, we shall construct a
sharp resonant normal form inspired by a result contained in [33] and then we
shall confine the actions with the help of a geometric tool described in [21] and
[22]. We stress that the estimates and the techniques which will henceforth be
used can be generalized to any quasi-integrable system. Furthermore, in the
case under study, the drift of the cartesian variables (xj, yj) will be bounded
by the conservation of the total angular momentum

N :=
2∑
j=1

Λj(t)
√

1− e2
j(t) . (24)

3.3. Stability in the neighbourhood of periodic orbits

The main theorem can be stated as follows:
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Theorem (Stability for the whole system) 1. With the notations of
section (3.2), suppose that there exist m ∈ N and three numbers p, q1, q2 ∈]

0,
2

3

[
satisfying

2υ0(m) < q1 , 2Υ0(m) < q2 , 2ζ0(m) < p . (25)

Suppose ε, and consequently η0, Ξ0, |f0|3, |g0 − G|3, sufficiently small so that
one can pick two positive real numbers R, ξ0 such that

C1(R) > 0

ξ +

(
1− TΞ0

2

1− qm2
1− q2

)
u > ξ0 ≥ 0

ξ +

(
1− TΞ0

2

1− qm2
1− q2

)
u ≥

√
Λ0

1 + Λ0
2 + 2

(
ρ+ r +

Tη0

2

1− qm1
1− q1

r

)
−N−(ξ0)

,

(26)

where C1(R) denotes the quantity

κ

2

{[
ρ+ r −

(
K

κ
+ 1

)(
R +

Tη0

2

1− qm1
1− q1

r

)]2

−
[
K

κ

(
R +

Tη0

2

1− qm1
1− q1

r

)]2
}

−
(
p

1− pm

1− p
+ 2pm

)
|f0|3 − 2 |g0 − G|3

(27)

and we have defined

N−(ξ0) := (Λ0
1 −R)

√
1− ē1(0, ξ0)2 + (Λ0

2 −R)
√

1− ē2(0, ξ0)2 ,

ēj(0, ξ0) :=

√
1−

(
1− ξ2

0

2(Λ0
j −R)

)2

, j ∈ {1, 2}.
(28)

Then, for any initial condition

(I(0), ϑ(0), x(0), y(0)) ∈ S0 (R)× S0 (R)× T2 ×B0,0(ξ0)×B0,0(ξ0) (29)

the flow of hamiltonian (16) stays in D
1+

Tη0
2

1−qm1
1−q1

,1−TΞ0
2

1−qm2
1−q2

and there exist a

positive constant C2 and three functions Rf (t), e1(t, ξ0), e2(t, ξ0) such that for
any time

|t| < t̄ :=
C1(R)

C2

q−m1 , (30)
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one has

|I(t)− I(0)|S0(R)×S0(R) ≤ Rf (t) , e1(t) < e1(t, ξ0) , e2(t) < e2(t, ξ0) . (31)

Moreover, such constant and functions can be can be computed explicitly and
read:

C2 :=r|ω1 + ω2|η0 , Rf (t) :=
K

κ
R̃ +

√(
K

κ
R̃

)2

+ a(t) +
Tη0

2

1− qm1
1− q1

r ,

e1(t, ξ0) :=

√
1−

(
N−(ξ0)− Λ0

2 −Rf (t)

Λ0
1 +Rf (t)

)2

e2(t, ξ0) :=

√
1−

(
N−(ξ0)− Λ0

1 −Rf (t)

Λ0
2 +Rf (t)

)2

.

(32)

where we have defined

a(t) :=
2

κ

[(
p

1− pm

1− p
+ 2pm

)
|f0|3 + 2 |g0 − G|3 + C2 q

m
1 |t|

]
R̃ :=R +

Tη0

2

1− qm1
1− q1

r .

The proof of such result can be split into two parts which insure, re-
spectively, stability in the action variables and confinement in the cartesian
ones.

3.3.1. Confinement of the actions

We start by defining the time of escape tesc(R̄, ξ̄) from any set of initial
conditions

S0(R̄)× S0(R̄)× T2 ×B0,0(ξ̄)×B0,0(ξ̄) ,

with (R̄, ξ̄) two positive real numbers satisfying

R̄ < ρ+ r − Tη0

2

1− qm1
1− q1

r , ξ̄ < ξ + u− TΞ0

2

1− qm2
1− q2

u ,

as the infimum time τ for which

Λτ
H(S0(R̄)× S0(R̄)× T2 ×B0,0(ξ̄)×B0,0(ξ̄)) * D

1+
Tη0

2

1−qm1
1−q1

,1−TΞ0
2

1−qm2
1−q2

.

(33)

Now, stability of the action variables is insured by the following

13



Theorem (Stability of the action variables) 2. With the notations of
Theorem 1, assume hypotheses (25) as well as the first inequality in (26).
Then, for any initial condition satisfying

(I(0), ϑ(0), x(0), y(0)) ∈ S0 (R)× S0 (R)× T2 ×B0,0(ξ0)×B0,0(ξ0) , (34)

with ξ0 < ξ + u− TΞ0

2

1− qm2
1− q2

u, and for any time

|t| < min

{
C1(R)

C2

q−m1 , tesc(R, ξ0)

}
, (35)

one has

|I(t)− I(0)|S0(R)×S0(R) ≤ Rf (t) . (36)

In order to prove theorem 2, one must firstly put hamiltonian (16) into
resonant normal form by applying a transformation which is described in the
next

Lemma (Resonant Normal Form) 3. Consider the resonant decomposi-
tion H0 := H = h+ g0 + f0 of hamiltonian (16) in section 3.1 on the domain
D3. Assume estimates (19) and hypotheses (25) as in Theorem 1.
Then there exist a symplectic transformation Ψm, analytic and real-valued for
any real argument

Ψm : D1 −→ D
1+

Tη0
2

1−qm1
1−q1

,1+
TΞ0

2

1−qm2
1−q2

,

whose size is

||Ψm − id||1 ≤
Tη0

2

1− qm1
1− q1

, |||Ψm − id|||1 ≤
TΞ0

2

1− qm2
1− q2

, (37)

such that
Hm := H0 ◦Ψm = h+ gm + fm ,

where {h, gm} = 0 and 〈fm〉h = 0 .
Furthermore, the following estimates hold

||Xfm||1 ≤ qm1 η0 ||Xgm − G||1 ≤ γ0 +
q1

2

1− qm1
1− q1

η0

|||Xfm |||1 ≤ qm2 Ξ0 |||Xgm − G|||1 ≤ Γ0 +
q2

2

1− qm2
1− q2

Ξ0 ,

|fm|1 ≤ pm |f0|3 |gm − G|1 ≤
p

2

1− pm

1− p
|f0|3 + |g0 − G|3 .

(38)

14



This lemma is proven by iterating m times the following result which is, in
turn, an improved version of a result contained in [33]. All constant are
made explicit here and we have tried to sharpen all the estimates as much as
possible.

Lemma (Single perturbative iteration) 4. Consider the resonant decom-
position H0 := H = h + g0 + f0 of hamiltonian (16) in section 3.1 on the
domain D3. Assume estimates (19) and hypotheses (25) as in Theorem 1.

Furthermore, suppose that for a real number α ∈
]
0,

1

2

[
one has

Tη0

2α
< 1 . (39)

There exists a symplectic real-analytic transformation Φ1 : D1−2α −→ D1−α
of size

||Φ1 − id||1−2α ≤
Tη0

2
, |||Φ1 − id|||1−2α ≤

TΞ0

2
, (40)

which takes the hamiltonian into the resonant form H1 := H0◦Φ1 = h+g1+f1 ,
where {h, g1} = 0 and 〈f1〉h = 0.
Moreover, the following estimates hold

||Xf1||1−2α ≤ 2υ0

(
1

α

)
η0, ||Xg1 −XG||1−2α ≤ υ0

(
1

α

)
η0 + γ0 (41)

|||Xf1|||1−2α ≤ 2Υ0

(
1

α

)
Ξ0, |||Xg1−XG|||1−2α ≤ Υ0

(
1

α

)
Ξ0 + Γ0 , (42)

whereas functions are bounded by

|f1|1−2α ≤ 2ζ0

(
1

α

)
|f0|1, |g1 − G|1−2α ≤ ζ0

(
1

α

)
|f0|1 + |g0 − G|1 . (43)

This lemma is proven by making use of some sharp techniques of perturbation
theory.

Proof. We look for a transformation Φ1 which is the symplectic flow at time
t = 1 of a generating function φ1, so that, by denoting Lφ1(·) := {φ1, ·} the
standard Poisson operator, the original hamiltonian takes the form

H1 = H0 ◦ Φ1 = h+ g0 + f0 + Lφ1(h) +
∑
n≥2

1

n!
Lnφ1

(h) +
∑
n≥1

1

n!
Lnφ1

(g0 + f0) ,

(44)
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and we impose the homological equation Lφ1(h) = −f0, whose solution is

φ1 =
1

T

∫ T

0

tf0 ◦ Λt
hdt =

1

T

∫ T

0

tf0(I, ϑ+ ωt, x, y)dt . (45)

In this way, the transformed hamiltonian reads

H1 = h+ g0 + r1 := h+ g0 +

∫ 1

0

{φ1, g0 + tf0} ◦ Λt
φ1
dt . (46)

Furthermore, if we define

g1 := g0 + 〈r1〉h , f1 := r1 − 〈r1〉h , (47)

the following resonant decomposition holds

H1 = h+ g1 + f1 , {h, g1} = 0 , 〈f1〉h = 0 .

Now, in order to prove that the flow Λt
φ1

starting from D1−2α stays in D1−α
for |t| ≤ 1, we define the time of escape

t∗ := inf{t ∈ R s.t. Λt
φ1

(D1−2α) /∈ D1−α} (48)

and, by expression (45) together with standard inequalities, we find the
following estimates for the hamiltonian vector field Xφ1 associated to φ1:

||Xφ1||1 ≤
Tη0

2
, |||Xφ1|||1 ≤

TΞ0

2
. (49)

Let us consider an escape from D1−α of the action component of the flow with
initial conditions in D1−2α. By standard arguments, such condition imposes

Tη0

2
r|t∗| ≥ αr ⇐⇒ Tη0

2α
|t∗| ≥ 1 ,

so that, by hypothesis (39), one gets |t∗| > 1.
In a completely analogous way one proves a similar result for the other
variables and is thus insured that Φ1(D1−2α) ⊂ D1−α .
The discussion above, together with estimates (49) implies

||Φ1 − id||1−2α ≤
Tη0

2
, |||Φ1 − id|||1−2α ≤

TΞ0

2
. (50)
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Finally, in order to prove estimates (41) and (42) in the statement, we consider
the symplectic field associated to the remainder in expression (46), namely

Xr1 =

∫ 1

0

J
(
DΛt

φ1

)† [∇ ({φ1, g0 + tf0}) ◦ Λt
φ1

]
dt

=

∫ 1

0

J
(
DΛt

φ1

)† J −1J
[
∇ ({φ1, g0 + tf0}) ◦ Λt

φ1

]
dt

=

∫ 1

0

M
(
[Xφ1 , Xg0+tf0 ] ◦ Λt

φ1

)
dt ,

(51)

where we have defined the matrixM := J
(
DΛt

φ1

)† J −1 and we have used the
fact that the symplectic gradient of a Poisson bracket yields the Lie bracket
(see e.g. [24] for a proof of this statement).
We show in appendix Appendix A that estimates (41) and (42) follow imme-
diately from the definitions in (47)and from expression (51), provided that
one gives a bound to the matrix M with the help of the Cauchy inequalities,
and a bound to the Lie bracket by making use of an argument in [11]. A
similar procedure will yield a bound on the remainder (46) which, in turn,
will imply inequalities (43), as we show in appendix Appendix A as well.

We are now able to write the proof of the normal form lemma.

Proof. This lemma is proven by iterating m times the machinery described
in the proof of lemma (4). Hypothesis (25) implies that condition (39) holds
with α = 1/m. Therefore, the iterative lemma can be applied and yields

||Xf1||3− 2
m
≤ q1η0 , ||Xg1 −XG||3− 2

m
≤ q1

2
η0 + γ0

|||Xf1|||3− 2
m
≤ q2Ξ0 , |||Xg1 −XG|||3− 2

m
≤ q2

2
Ξ0 + Γ0 .

If m = 1 the proof ends here.
If m > 1, one just needs to prove that if the statement is true after l < m
applications of the iterative lemma, then it is also stands true after a l + 1-th
application. Thus, we suppose that after l < m iterations we have

||Xfl ||3− 2l
m
≤ ql1η0 := ηl , ||Xgl −XG||3− 2l

m
≤ q1

2

1− ql1
1− q1

η0 + γ0 := γl

|||Xfl |||3− 2l
m
≤ ql2Ξ0 := Ξl , |||Xgl −XG|||3− 2l

m
≤ q2

2

1− ql2
1− q2

Ξ0 + Γ0 := Γl .

(52)
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Now, the aim is to apply the iterative lemma again with inequalities (52) as
initial estimates. Hypothesis (39) still holds because, since 0 < q1 < 2/3, one
has

Tmηl := qlTmη0 < 2 ,

so that, after having applied the iterative lemma once more, one is left with
a hamiltonian in the following form:

Hl := H0 ◦ Φ1 ◦ ... ◦ Φl ◦ Φl+1 = h+ gl+1 + fl+1 ,

where Φj is the symplectic transformation used at the j-th iteration of lemma
(4), and {h, gl+1} = 0, 〈fl+1〉h = 0 . Now, thanks to hypotheses (25) and by
using the standard triangular inequality, we obtain

∣∣∣∣Xgl+1
−XG

∣∣∣∣
3− 2(l+1)

m

<
l∑

j=0

qj+1
1

2
η0 + γ0 =

q1

2

1− ql+1
1

1− q1

η0 + γ0 ,

∣∣∣∣∣∣Xgl+1
−XG

∣∣∣∣∣∣
3− 2(l+1)

m

<
q2

2

1− ql+1
2

1− q2

Ξ0 + Γ0 .

The same inductive scheme applies when calculating the size of the transfor-
mation Ψm := Φ1 ◦ Φ2 ◦ ... ◦ Φm ; by using estimate (40) at each step and by
summing up the geometrically decreasing contributions, one ends up with

||Ψl+1 − id||3− 2(l+1)
m

≤ Tη0

2

1− ql+1
1

1− q1

, |||Ψl+1 − id|||3− 2(l+1)
m

≤ TΞ0

2

1− ql+1
2

1− q2

.

In the same way, being p < 2/3 by hypothesis and by iterating estimates (43)
l + 1 < m times, at the l + 1-th iteration one has

|fl+1|3− 2(l+1)
m

≤ 2p |fl|3− 2l
m
, |gl+1 − G|3− 2(l+1)

m

≤ p |fl|3− 2l
m

+ |gl − G|3− 2(l+1)
m

.

(53)
By summing up, one finally obtains

|fm|1 ≤ pm |f0|3 , |gm − G|1 ≤
p

2

1− pm

1− p
|f0|3 + |g0 − G|3 . (54)

Moreover, as we shall show in appendix Appendix B, the transformation
Ψm defined in normal form lemma 3 is invertible and its inverse admits the
same estimates.
Now, the proof of theorem 2 exploits a geometrical argument in order to
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obtain stability in the action variables. More precisely, variations of the
projection on the line spanned by ω of the action variables are only due to the
non-resonant part of the perturbation, whose magnitude has been diminished
thanks to the resonant normal form developed in lemma 3, whereas the
convexity of Hkep bounds the diffusion in the direction orthogonal to ω. Such
proof is developed below.

Proof. Conditions (25) allow for the application of the normal form lemma
to hamiltonian (16). We denote the normalized coordinates with a ·̃ so that,
after normalization, the hamiltonian is in the form

Hm(Ĩ , ϑ̃, x̃, ỹ) := H ◦Ψm(Ĩ , ϑ̃, x̃, ỹ) = h(Ĩ) + gm(Ĩ , ϑ̃, x̃, ỹ) + fm(Ĩ , ϑ̃, x̃, ỹ) ,

and estimates (38) hold. Then, we consider the set S0(R)× S0(R) of initial
conditions for the original non-normalized action variables I. Corollary 7
insures that its image in the normalized variables is contained in the set
S0(R̃)× S0(R̃) which in turn, thanks to (26), is contained in the domain of
the normal form. The same holds for the cartesian variables, whose set of
initial conditions B0,0(ξ0)×B0,0(ξ0) is mapped into B0,0(ξ̃0)×B0,0(ξ̃0), with

ξ̃0 := ξ0 +
TΞ0

2

1− qm2
1− q2

u < ξ + u by hypothesis. Now, if we consider a time t

such that

t < inf{τ ∈ R : Λτ
Hm(S0(R̃)× S0(R̃)× T2 ×B0,0(ξ̃0)×B0,0(ξ̃0))} * D1 ,

(55)

we can develop the flow

Hkep(Ĩ) ◦ Λt
Hm = [h(Ĩ) + G(Ĩ)] ◦ Λt

Hm

in Taylor series with initial condition Ĩ(0) ∈ S0(R̃)× S0(R̃) and get∣∣∣Hkep(Ĩ(t))−Hkep(Ĩ(0))
∣∣∣+ ∣∣∣∣〈∂Hkep

∂Ĩ
(Ĩ(0)), Ĩ(t)− Ĩ(0)

〉∣∣∣∣
≥κ

2
|Ĩ(t)− Ĩ(0)|2 ,

(56)

since the unperturbed hamiltonian Hkep is convex.
Energy conservation Hm(Ĩ(t), ϑ̃(t), x̃(t), ỹ(t)) = Hm(Ĩ(0), ϑ̃(0), x̃(0), ỹ(0)) ,
together with estimates (38) on functions, implies the following inequality for
the first summand in (56)∣∣∣Hkep(Ĩ(t))−Hkep(Ĩ(0))

∣∣∣ ≤ 2

[(
p

2

1− pm

1− p
+ pm

)
|f0|3 + |g0 − G|3

]
. (57)
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On the other hand, we can split the second term in expression (56) into its
parallel and orthogonal component with respect to ω. Since gm is in involution
with h, we have∣∣∣〈ω, Ĩ(t)− Ĩ(0)

〉∣∣∣ =

∣∣∣∣∫ t

0

〈
ω,
∂fm

∂ϑ̃

〉
dτ

∣∣∣∣
S0(R̃)×S0(R̃)×T2×B0,0(ξ̃)×B0,0(ξ̃)

, (58)

so that ∣∣∣〈ω, Ĩ(t)− Ĩ(0)
〉∣∣∣ ≤ r(|ω1|+ |ω2|)η0q

m
1 |t| , (59)

where, in the last inequality, we have made use of estimates (38).
Moreover, we also have∣∣∣∣〈∂Hkep

∂I
(Ĩ(0))− ω, Ĩ(t)− Ĩ(0)

〉∣∣∣∣ ≤ KR̃
∣∣∣Ĩ(t)− Ĩ(0)

∣∣∣ . (60)

By plugging (57), (59) and (60) into (56) we have

2

[(
p

2

1− pm

1− p
+ pm

)
|f0|3 + |g0 − G|3

]
+ r(|ω1|+ |ω2|)η0q

m
1 |t|+KR̃

∣∣∣Ĩ(t)− Ĩ(0)
∣∣∣ ≥ κ

2

∣∣∣Ĩ(t)− Ĩ(0)
∣∣∣2 (61)

whose solution is

0 ≤
∣∣∣Ĩ(t)− Ĩ(0)

∣∣∣ ≤ K

κ
R̃ +

√(
K

κ
R̃

)2

+ a(t) , (62)

where we denote with a(t) the quantity

2

κ

[(
p

1− pm

1− p
+ 2pm

)
|f0|3 + 2 |g0 − G|3 + r(|ω1|+ |ω2|)η0q

m
1 |t|

]
. (63)

Now, consider a time t sufficiently small so that∣∣∣Ĩ(t)
∣∣∣ ≤ ∣∣∣Ĩ(t)− Ĩ(0)

∣∣∣ +
∣∣∣Ĩ(0)

∣∣∣ ≤ ρ+ r . (64)

With the help of inequality (62) and by taking the definition of R̃ into account,
the latter inequality can be rewritten as(

K

κ
+ 1

)
R̃ +

√(
K

κ
R̃

)2

+ a(t) ≤ ρ+ r . (65)
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Extracting t from the above formula one is left with

t < t̄ :=
C1(R)

C2

q−m1 , (66)

where the constants read

C1(R) :=
κ

2

{[
ρ+ r −

(
K

κ
+ 1

)
R̃

]2

−
(
K

κ
R̃

)2
}

−
(
p

1− pm

1− p
+ 2pm

)
|f0|3 − 2 |g0 − G|3

C2 :=r(|ω1|+ |ω2|)η0 .

(67)

When coming back to the original, non-resonant variables, one must add to
the variation calculated in (62) the size of the normal form transformation;
this eventually yields

|I(t)− I(0)| ≤ K

κ
R̃ +

√(
K

κ
R̃

)2

+ a(t) +
Tη0

2

1− qm1
1− q1

r , (68)

so that the theorem is proved.

3.3.2. Confinement of the eccentricities

In this section we prove the second part of theorem 1 and insure that the
diffusion of the cartesian variables is bounded thanks to the conservation of
the angular momentum. In particular we have the following

Theorem (Stability of the cartesian variables) 5. Assume the hypothe-
ses and the notations of Theorem 2. Consider, in particular, the domain
Dρ,4r,4s,ξ,4u of analyticity for hamiltonian (16). Choose a radius of initial
conditions

ξ0 = max
j∈{1,2}

{xj(0)2 + yj(0)2}

for the cartesian variables and suppose that ε, and consequently Ξ0, is suffi-
ciently small so that

ξ +

(
1− TΞ0

2

1− qm2
1− q2

)
u > ξ0

ξ +

(
1− TΞ0

2

1− qm2
1− q2

)
u ≥

√
Λ0

1 + Λ0
2 + 2Rf (t̄)−N−(ξ0) ,

(69)
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where N−(ξ0) is as in (28). Then there exist two functions e1(t, ξ0), e2(t, ξ0)

such that, for all t < t̄ :=
C1(R)

C2

q−m1 , one has

e1(t) < e1(t, ξ0) , e2(t) < e2(t, ξ0) . (70)

Moreover, e1 and e2 can be explicitly computed and read

e1 : (t, ξ0) 7−→

√
1−

(
N−(ξ0)− Λ0

2 −Rf (t)

Λ0
1 +Rf (t)

)2

,

e2 : (t, ξ0) 7−→

√
1−

(
N−(ξ0)− Λ0

1 −Rf (t)

Λ0
2 +Rf (t)

)2

.

(71)

Proof. By expressions (24) and (28), N (ξ0) is the minimum angular momen-
tum compatible with the initial radius ξ0. By the very definitions (12) of xj
and yj and by taking the size of the normal form transformation into account,
we can say that for any time t < tesc(R, ξ0) and for any initial condition

(I(0), ϑ(0), x(0), y(0)) ∈ S0(R)× S0(R)× T2 ×B0,0(ξ0)×B0,0(ξ0)

one has [
ξ +

(
1− TΞ0

2

1− qm2
1− q2

)
u

]2

> 2(Λ1(t) + Λ2(t)−N ) . (72)

One immediately sees that hypothesis (69), together with theorem 2 and
the fact that Rf (t) is an increasing function of the time t, implies that

t̄ < tesc(R, ξ0) .

As a matter of fact, we now have that for any initial condition (xj(0), yj(0)), j ∈
{1, 2}, in the original non-normalized cartesian variables such that

x2
j(0) + y2

j (0) < ξ0 ,

with ξ0 satisfying (69), one is insured that the system does not escape from the
domain of the normal form for any time t inferior to the time of confinement
in the action variables.
Moreover, since N is an integral of motion, we have that for all times t ∈ R

N ≥ N−(ξ0) . (73)

Therefore, solving inequality (24) for N = N−(ξ0) yields the claimed result.
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3.3.3. Proof of the main stability theorem

Theorems 2 and 5 together imply theorem 1. Such result is strictly local
since it has been constructed in the neighborhood of a periodic orbit of the
unperturbed system. In order to obtain a global result (which is not our
purpose here), one could make use of Dirichlet’s approximation theorem so
to cover the whole phase space with periodic orbits, as it is done in [23].

4. The restricted, circular, planar three-body problem

4.1. Motivation

Theorem 1 insures Nekhoroshev-like stability for the plane, planetary
three-body problem in the neighborhood of a periodic orbit of the unper-
turbed system. Clearly, the method we used to prove it can be applied to any
quasi-integrable system, provided that one explicitly knows the analyticity
widths and the initial bounds on its hamiltonian vector fields. In the previous
section, we just had information on the size of the perturbation in its domain
of analyticity, so that we were obliged to make use of the Cauchy inequalities
in order to get estimates (19). These inequalities, in turn, are derived from
the well-known Cauchy representation formula (see e.g. [35]) with the help of
generic bounds that may not be sharp at all in many concrete applications.
Therefore, a direct computation of the derivatives, when possible, may lead
to improved initial estimates. This turns out to be very important in the case
we are considering since any initial gain in the estimates for functions and
vector fields grows exponentially in the number of iterations of lemma 4, as
theorem 2 shows.
Moreover, at least in principle, theorem 2 may be limited in its physical
applications by the complex singularities of the considered hamiltonian. In-
deed, as we shall see when considering explicit computations in paragraph 5,
the value of the analyticity width r in the action variables which yields the
longest time of stability increases with the size ε of the perturbation. Thus,
at least in principle, singularities may be encountered when considering a
domain which is too large in the action variables. Knowing exactly where
these singularities are in complex action-angle coordinates turns out to be a
very diffucult matter when considering problems in celestial mechanics. In
[6], for example, one is given sufficient conditions so to avoid them.
In order to see what happens when such difficulties can be overcome, it is
interesting to apply the results of section 3 to a system whose hamiltonian
vector fields can be directly estimated without making use of the Cauchy
inequalities and whose hamiltonian perturbation has no complex singularities.
In this spirit, we chose to investigate the Nekhoroshev-like stability in the
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neighborhood of a periodic torus for the restricted, circular, planar three-body
problem as modeled in [7] and [8].

4.2. Hamiltonian framework

Here, we briefly recall the hamiltonian setup stated in [7] and we give some
suitable definitions. Consider, once again, three coplanar bodies mutually
interacting through the sole gravitational force and label them with an index
j ∈ {0, 1, 2}. In this case we suppose that the mass m0 is much greater
than m1 and that m2 = 0. When considering heliocentric coordinates, we
are left with an elliptic orbit of frequency ωg and semi-major axis a1 for
body 1 around body 0 and with body 2 undergoing interactions with the
primaries. The circular approximation consists in assuming a null eccentricity
for the trajectory of body 1 in the configuration space. In this framework,
suitable action-angle coordinates for body 2, expressed as functions of its
time-dependent orbital elements, are

L := µ
√
GNm0a

G := L
√

1− e2

l := λ

g := γ − τ

, (74)

where we have denoted µ := (GNm0)−2/3 and where λ, γ respectively stand
for the mean longitude and the argument of periapsis for body 2 and τ is the
mean longitude of body 1.
Following the construction in [7], the motion of body 2 is governed by the
following hamiltonian:

H(L,G, l, g) := H0(L,G) + εH1(L,G, l, g) , (75)

where

H0(L,G) := − 1

2L2
− ωgG , (76)

and H1 is a trigonometric polynomial which is obtained by retaining only
the most relevant harmonics from the Fourier expansion of the complete
perturbation.
Since we are interested in the behaviour of this system in the neighbourhood
of a p : q resonance corresponding to a T -periodic torus, we can consider the
same resonant decomposition that held for the planetary three-body problem
in section 3. For the sake of simplicity, we shall use the same symbols to
denote quantities that play the same roles in the two cases. Thus, we are
allowed to write

H(L,G, l, g) := h(L,G) + g0(L,G, l, g) + f0(L,G, l, g) , (77)
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where h generates the integrable linear flow of frequencies (ωl, ωg), and g0, f0

are the resonant and non resonant perturbations. In this case, g0 and f0 are
two trigonometric polynomials. Moreover, as we did in the prequel, we use
the symbol G to denote the remainder of order 2 in the expansion of H0 and
(L0, G0) to denote the action variables corresponding to the exact resonance
for the integrable hamiltonian.
After these observations, we now consider the domain

DρL,ρG,rL,rG,sl,sg := {(L,G, l, g) ∈ C4 :

∃ L∗ ∈ SL0(ρL) such that |L− L∗| < rL ,

∃ G∗ ∈ SG0(ρG) such that |G−G∗| < rG ,

<e(l, g) ∈ T2 , |=m(l)| < sl , |=m(g)| < sg}

(78)

with the same shorthand notations we defined in (3). Remark that the
values for the analyticity widths can be arbitrary in this case since there
are no complex singularities. Then, we assume that the truncated model
described by hamiltonian (77) satisfies the same assumptions on the magnitude
of the discarded harmonics as in [7]. Such condition was always checked
when performing the computations of section 5. Moreover, we introduce the
following definition:

Definition 6. For (j, σj) ∈ {(L, rL), (G, rG), (l, sl), (g, sg)}, for any open set
E ⊂ C4 and for any continuous, bounded vector field v : E −→ C4, we define
the following norm for each component vj:

∣∣∣∣vj∣∣∣∣E :=
|vj|E
σj

. (79)

As we did in section 3, we also assume the following bounds on the anisotropic
norms∣∣∣∣XL

G
∣∣∣∣

3
≤ δ,

∣∣∣∣Xj
f0

∣∣∣∣
3
≤ ηj0,

∣∣∣∣Xj
g0−G

∣∣∣∣
3
≤ γj0, j ∈ {L,G, l, g} . (80)

Notice that G only depends on the first action L as H0(L,G) is linear with
respect to G.
Since perturbation H1 is an explicit finite sum of Fourier harmonics, quantities
(80) can be estimated without making use of the Cauchy inequalities. As in
the planetary case, the non-null eigenvalue of the hessian matrix D2H0(I),
denoted %(L), satisfies κ ≤ |%(L)| ≤ K for all values of L in the domain
SL0(rL), where K and κ are two positive constants. As in the planetary
case, both quantities can be explicitly computed. Finally, we introduce five
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real functions that play the same role that (20), (21) and (22) played in the
planetary case, namely

υL0 : x 7−→(Tx)2 ηl0
2

χ0 +
Tx

2
χ0 +

(
1 +

γL0
ηL0

)
xΘ0

+
s2

s1

r2

r1

Tx2

2ηL0

{
Tηg0η

G
0 χ0 +

[
ηg0(ηG0 + γG0 ) + ηG0 (ηg0 + γg0)

]
Θ0

}
+
Tx2

2

[
ηl0

(
1 +

γL0
ηL0

)
+ ηl0 + γl0 + δ

]
Θ0 ,

(81)

υG0 : x 7−→(Tx)2 ηg0
2

χ0 +
Tx

2
χ0 +

(
1 +

γG0
ηG0

)
xΘ0

+
s1

s2

r1

r2

Tx2

2ηG0

{
Tηl0η

L
0 χ0 +

[
ηl0(ηL0 + γL0 ) + ηL0 (ηl0 + γl0 + δ)

]
Θ0

}
+
Tx2

2

[
ηg0

(
1 +

γG0
ηG0

)
+ ηg0 + γg0

]
Θ0 ,

(82)

υl0 : x 7−→ (Tx)2 η
L
0

2
χ0 +

Tx

2
χ0 +

(
1 +

γl0
ηl0

+
δ

ηl0

)
xΘ0

+
s2

s1

r2

r1

Tx2

2ηl0

{
Tηg0η

G
0 χ0 +

[
ηg0(ηG0 + γG0 ) + ηG0 (ηg0 + γg0)

]
Θ0

}
+
Tx2

2

[
ηL0

(
1 +

γl0
ηl0

+
δ

ηl0

)
+ ηL0 + γL0

]
Θ0 ,

(83)

υg0 : x 7−→ (Tx)2 η
G
0

2
χ0 +

Tx

2
χ+

(
1 +

γg0
ηg0

)
xΘ0

+
s1

s2

r1

r2

Tx2

2ηg0

{
Tηl0η

L
0 χ0 +

[
ηl0(ηL0 + γL0 ) + ηL0 (ηl0 + γl0 + δ)

]
Θ0

}
+
Tx2

2

[
ηG0

(
1 +

γg0
ηg0

)
+ ηG0 + γG0

]
Θ0 ,

ζ0 : x 7−→Tx

2
χ0 ,

(84)

where we have set

χ0 := sup{ηL0 + γL0 , η
G
0 + γG0 , η

l
0 + γl0 + δ, ηg0 + γg0} , (85)

Θ0 :=
T

2
sup{ηL0 , ηG0 , ηl0, η

g
0} . (86)
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4.3. Stability in the neighbourhood of a periodic torus

Taking the definitions of the previous paragraph into account, we are now
ready to state a stability result for the restricted problem. Since hamiltonian
(76) is strictly convex only in the L coordinate, the method we used when
proving theorem 2 can only be used to confine this variable as the following
theorem shows. The G variable could be bounded by making use of some
arguments exploiting quasi-convexity (see e.g. [21]). However, since we are in
the particular case of a two degrees of freedom system, we chose to confine the
G variable by making use of the conservation of energy since such approach
involves simpler calculations.

Theorem (Stability for the whole system) 6. With the notations of

section (4.2), suppose that there exist m ∈ N and five numbers p, qj ∈
]
0,

2

3

[
,

where j ∈ {L,G, l, g} is an alphabetical index, satisfying

2υj0(m) < qj , 2ζ0(m) < p . (87)

Suppose that ε, and conseguently ηL0 , ηG0 , |f0|3, is |g0 − G|3 sufficiently small
and assume that the analyticity radii rG, ρG are sufficiently big so that one
can pick two positive real numbers Linit, Ginit satisfying

C3(Linit) > 0 , (88)

and

Ginit +
1

ωG
(W (Linit) + 2ε|H1|1) ≤ ρG + rG −

TηG0
2

1− qmG
1− qG

rG , (89)

where

C3(Linit) :=
κ

2

{[
ρL + rL −

(
K

κ
+ 1

)
Linit

]2

−
(
K

κ
Linit

)2
}

−
(
p

1− pm

1− p
+ 2pm

)
|f0|3 − 2 |g0 − G|3 ,

W (Linit) :=

(
Linit + V (ρL, rL, η

L
0 )
) (
Linit + 2L0 + V (ρL, rL, η

L
0 )
)

2 (L0 − V (ρL, rL, ηL0 ))
2

(L0 − Linit)2

(90)

and we have denoted

V (ρL, rL, η
L
0 ) = ρL + rL −

TηL0
2

1− qmL
1− qL

rL . (91)
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Then there exist a positive constant C4 and three functions Lf , A± : R −→ R
such that, for any initial condition

(L(0), G(0), l(0), g(0)) ∈ SL0 (Linit.)× SG0 (Ginit.)× T2 (92)

and for any time

|t| < t̄ :=
C3(Linit)

C4

q−mL , (93)

the flow of H stays inside D
1+

TηL0
2

1−qm
L

1−qL
,1−

TηG0
2

1−qm
G

1−qG

and one has

|L(t)− L(0)|SL0 (Linit)
≤ Lf (t) , (94)

whereas the eccentricity is bounded by√
1− A+(t) ≤ e(t) ≤

√
1− A−(t) . (95)

Moreover, explicit expressions for such constant and functions can be found
and read:

C4 :=

∣∣∣∣ωlηL0 rL +

(
qG
qL

)m
ωgη

G
0 rG

∣∣∣∣ ,

Lf : t 7−→ K

κ
L̃+

√(
K

κ
L̃

)2

+ b(t) +
TηL0

2

1− qmL
1− qL

rL ,

A±(t) :=
1

a(t)

[
a(0)y(0) +

B2(t)

GNm0(µωG)2

]
± 2B(t)

a(t)µωG

√
a(0)y(0)

GNm0

,

(96)

where we have denoted

L̃ :=Linit. +
TηL0

2

1− qmL
1− qL

rL , y(0) :=
√

1− e2(0)

b(t) :=
2

κ

[(
p

1− pm

1− p
+ 2pm

)
|f0|3 + 2 |g0 − G|3 + C4q

m
L |t|

]
B(t) :=

∣∣∣∣ 1

2L2(t)
− 1

2L2(0)

∣∣∣∣+ ε
∣∣H1 ◦ Λt

H −H1 ◦ Λ0
H

∣∣
. (97)
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Proof. The stability of the L coordinate is demonstrated by putting the
hamiltonian into resonant normal form and by applying exactly the same
geometrical argument of theorem 2. Clearly, two lemmas corresponding to
lemmas 3 and 4 in section 3.3 hold also in this case: their statements and
proofs can be found in appendix Appendix C.
As for the bound on the G variable, we exploit the conservation of energy for
hamiltonian (77),

H(L(t), G(t), l(t), g(t)) = H(L(0), G(0), l(0), g(0)) , (98)

which yields the following bound:

|G(t)−G(0)| ≤ 1

ωG

(∣∣∣∣ 1

2L2(t)
− 1

2L2(0)

∣∣∣∣+ ε|H1 ◦ Λt
H −H1 ◦ Λ0

H |
)
. (99)

In order to stay in the image of the normal form transformation one must
also have

|G(0)|+ |G(t)−G(0)| ≤ ρG + rG −
TηG0

2

1− qmG
1− qG

rG .

By hypothesis we had G(0) ∈ SG0(Ginit.) and by estimate (99) one obtains

|G(t)−G(0)| ≤ 1

ωG

(∣∣∣∣(L(t)− L(0))(L(t) + L(0))

2L2(t)L2(0)

∣∣∣∣+ 2ε|H1|1
)
, (100)

so that, by taking the confinement of the L variable and hypothesis (89) into
account, one is insured that the variable G stays in the sphere

SG0

(
ρG + rG −

TηG0
2

1− qmG
1− qG

rG

)
for any time t inferior to the time of stability t̄ of the L variable.
By taking the second expression in (74) and the conservation of energy into
account and solving with respect to e one gets inequality (95). Moreover, by
considering the expression for (94), one obtains a suitable supremum for the
eccentricity.

5. Examples and computations

In the last part of this work, we have performed computations on the
theorems which were stated in the previous paragraphs. This allows for a
disentanglement of the limits that such techniques can encounter and suggest
solutions on how to overcome them in some cases. In particular, as we shall
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show in the sequel, various obstacles may arise when increasing the size ε of
the perturbation. However, there seems to be good hopes of reaching good
values for ε, at least in the truncated, restricted, circular, planar three-body
problem. Moreover, good thresholds on the size of the perturbation were
reached both in the KAM framework (see [7]) and in the Nekhoroshev one
(see [8]) when considering the latter model in other regions of the phase space.
The computations that we present hereafter were carried out with the help of
codes written in Mathematica.

5.1. The 5:2 resonance for the planetary problem

It is known since a long time (see e.g. [17]) that various commensurability
relations hold for the frequencies of celestial bodies in the Solar System. For
example, Jupiter and Saturn lie very close to the 5 : 2 mean-motion resonance
(see [25] and references therein for an astronomical point of view on this
phenomenon) and the ratio of their masses is close to 10−3. Moreover, the
relative inclinations of their orbital planes are small.
In this spirit, we choose to study the plane, planetary three-body problem
described in section 3 with explicit values corresponding to a Sun-Jupiter-
Saturn model (with smaller masses) in 5:2 resonance. The initial data for
the eccentricities and for the resonant action Λ0

1 are set to be those at J2000
(see https://nssdc.gsfc.nasa.gov/planetary/factsheet/), whereas Λ0

2

is determined by the resonant relation between the two mean motion frequen-
cies and by Kepler’s third law. Then, for different initial conditions in the
actions in a neighborhood of (Λ0

1,Λ
0
2) and for different values of ε, we compute

by trial and error the analyticity widths and the number m of iterations of
lemma 4 which yield the longest times of stability t̄. The magnitude of the
perturbing function on the chosen domain of analyticity was estimated with
the help of majorant series thanks to a code provided by Dr. Thibaut Castan
(see [6] for more details). The best results are obtained for R = ρ = 0, which
amounts to setting the initial conditions in the action variables exactly at
the resonance (Λ1(0) = Λ0

1,Λ2(0) = Λ0
2). For other initial conditions in the

actions variables not exactly at the resonance, one obtains times of stability
which are comparable with the age of the Solar System for similar magnitudes
of the perturbation, provided that the radius of initial conditions satisfies
R . 8 × 10−7 × max{Λ0

1,Λ
0
2} and that ρ . 1 × 10−6 × max{Λ0

1,Λ
0
2}. Such

results are contained in the tables below.
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log(ε) m t̄ (y) Rf (t̄)/max{Λ0
1,Λ

0
2} ē1 ē2

−12.25 61 5.71× 1039 7.07× 10−7 0.0595 0.0932
−12.00 45 1.17× 1029 9.65× 10−7 0.0595 0.0932
−11.75 34 1.25× 1021 1.30× 10−6 0.0595 0.0932
−11.50 25 1.48× 1015 1.80× 10−6 0.0595 0.0933
−11.25 18 5.75× 1010 2.51× 10−6 0.0595 0.0933
−11.00 14 3.08× 107 3.54× 10−6 0.0596 0.0934
−10.75 10 1.22× 105 5.14× 10−6 0.0596 0.0934

Table 1: From left to right: magnitude of the perturbation, number of iterative steps, time
of stability, radius of confinement in the actions, maximal values for the eccentricities.
Initial conditions in the actions are supposed to be those corresponding exactly to the 5:2
resonance, whereas the initial values for the eccentricities are set to be those for Jupiter
and Saturn at J2000.

log(ε) r/max{Λ0
1,Λ

0
2} s |1− β| ξ

−12.25 3.54× 10−7 3.97× 10−2 ∼ 6× 10−4 4.36× 1015

−12.00 4.83× 10−7 3.95× 10−2 ∼ 4× 10−4 5.80× 1015

−11.75 6.51× 10−7 3.91× 10−2 ∼ 2× 10−2 7.73× 1015

−11.50 9.04× 10−7 3.89× 10−2 ∼ 5× 10−4 1.03× 1016

−11.25 1.25× 10−6 3.85× 10−2 ∼ 3× 10−5 1.37× 1016

−11.00 1.76× 10−6 3.82× 10−2 ∼ 7× 10−4 1.83× 1016

−10.75 2.57× 10−6 3.76× 10−2 ∼ 8× 10−5 2.43× 1016

Table 2: From left to right: magnitude of the perturbation, analyticity widths for the
action-angle variables and for the cartesian coordinates. Initial conditions are the same of
Table 1.

log(ε) m ρ/max{Λ0
1,Λ

0
2} R/max{Λ0

1,Λ
0
2} t̄ (y)

−14.00 22 1.67× 10−6 1.38× 10−6 1.99× 1010

−12.25 19 1.22× 10−6 1.13× 10−6 3.04× 109

−11.5 18 1.03× 10−6 8.09× 10−7 1.04× 109

Table 3: From left to right: magnitude of the perturbation, number of iterative steps, real
radius of the polydisk in the actions, radius of initial conditions in the actions, time of
stability. Initial conditions in the actions are contained in an interval of radius R, whereas
the initial values for the eccentricities are set to be those for Jupiter and Saturn at J2000.
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Figure 1: In clockwise sense starting from upper left: superlinear dependence of the
maximal time of stability on the size of the perturbation; decrease of the best number of
perturbative steps m; increase of the value of the analyticity width r yielding the longest
time of stability; increase of the radius of confinement of the action variables. Initial
conditions are the same of Table 1.
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Indeed, we notice that the best number of iterations m decreases quite
rapidly when ε undergoes even small variations. This prevents one from
obtaining a time of stability comparable with the timescale of the problem
(which is the estimated age of the Solar System, i.e. about 5× 109 years) for
higher values of ε in the resonant regime. However, the results we obtained
improve those achieved with the same techniques by other authors. Indeed,
Niederman reached t̄ ∼ 4× 109 years for ε < 10−13 in [27], whereas Castan
obtained t̄ ∼ 1.3× 1011 years for ε < 10−13 in [6]. In our case, since we made
use of sharp methods based on vector field estimates, we were able to get good
times of stability (i.e. greater or equal, say, than 1× 109 years) for values of ε
which are almost 100 times greater than those in [27] and in [6], even though
the theory is flawed, as we have just said, by the fast descrease of m when ε
increases. This phenomenon, in turn, appears to be due to condition (39) in
lemma 4,

Tmη0

2
< 1 ,

which insures that each iteration actually diminishes the magnitude of the
non-resonant perturbation. By making use of the notations in paragraph 3.2,
one can equivalently rewrite it in the form

Tmε |HP |4
2rs

< 1 .

By looking at this expression, when considering increasing values for ε one
would be tempted to increase in turn r or s in order to compensate such
growth and keep m sufficiently high. Such strategy only works up to a certain
point. Indeed, the constant C1(R) appearing in theorem 2 increases as r2,
but a huge value of r amounts to enlarging the domain in which |HP |4 is
estimated and, moreover, it entails a remarkable growth on the parameter δ
associated with the remainder of order two for the unperturbed hamiltonian.
In particular, the size of δ appears to be essential in this scheme, since it
represents, roughly speaking, the distance to the resonance. Thus, increasing
r becomes helpless beyond a certain threshold. One may also be tempted to
do the same thing with s to keep the above inequality true. Unfortunately,
this does not work at all since s is the only analyticity width which is involved
in the exponential stability (see expression (??) for C2 in theorem 2 and
take the definition of η0 into account): even slight variations in its value
lead to large deteriorations in the time of stability. Moreover, since the
Fourier harmonics of HP diverge exponentially in the imaginary direction,
a remarkable increase in |HP |4 is entailed when increasing s. A possible
way to overcome such difficulty may be a sharper estimate on the size of
the complex hamiltonian which does not make use of majorant series. More
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powerful techniques of perturbation theory may also be implemented, such as
the continuous averaging method (see [36]).
When considering a non-zero radius R of initial conditions in the action
variables, we remark that, even in case a relatively large number of iterative
steps m is still available, results worsen if R is too large and the system is
thus too far from the resonant unperturbed torus. Such behaviour is due,
once more, to the growth of the term δ. In the sequel, we will see that this
phenomenon arises dramatically when considering the same computations for
the restricted, circular, planar problem.
Lastly, as we have already stressed, this study relies on rigorous estimates
on the domain of analyticity for hamiltonian (16) which are contained in [6].
In some sense, as we anticipated in paragraph 4.1, this opens an interesting
discussion on the role of singularities in preventing Nekhoroshev stability.
Actually, as the previous tables show, when considering increasing values for ε,
one is also obliged to increase the size in the action variables of the domain of
analyticity in order to get good times of stability. In our case, computations
show that the magnitude of the complex hamiltonian grows significantly
when considering a radius r ∼ 4× 10−5 ×max{Λ0

1,Λ
0
2} due to approaching

singularities, so quite far from the region of the complex phase space that we
are considering. Namely, the problem of having a low number m of available
perturbative steps for increasing values of ε and the growth of δ appear well
before singularities. However, as the same computations have shown, the
latter may be an obstacle when dealing with non-sharp constants and when
the initial estimates on functions and vector fields are rough. Indeed, in those
cases one is obliged to choose smaller values for ε and larger values for r
in order to get a good time of stability. In this light, singularities appear
to be an essential difficulty when dealing with perturbation theory, at least
when one considers the non-truncated model. It is interesting to notice that
Treschëv and Zubelevich pointed out the the importance of singularities in a
different context when describing the continuous averaging method in [36].
In order to see what happened around different periodic tori, we also explored
other resonances for the same masses, eccentricities and semi-major axis for
the heavier planet: in all cases the first arising difficulty was the abrupt
decrease in the optimal number of iterations m. Moreover, no significant
improvement on the thresholds for ε were reached.
Finally, one should also remark that since β ∼ 1 yields the best times of
stability, the optimal choice for u coincides in practice with the natural choice
u =
√
rs.
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5.2. The 3:1 resonance for the restricted problem
As for the restricted case, we chose to study the 3 : 1 resonance for a

Sun-Jupiter-asteroid model (with smaller Jupiter’s mass), as it corresponds
to a region of phase space where the construction described in [7] applies for
suitable initial values of the eccentricity e. Indeed, for such model to hold, one
needs the discarded harmonics to be smaller in value than those discarded in
[7]: this is precisely what we have checked preliminarily in our computations.
Moreover, since in such case the perturbation is constructed by retaining only
the most relevant harmonics from the complete perturbation, it is possible to
compute easily a numerical averaging to higher orders in ε in order to improve
the thresholds for which theorem 6 yields good times of stability. To achieve
such goal, one can apply the near-to-identity transformations described in
reference [8], where a different region in phase space for the same system
is explored. Moreover, as we anticipated in paragraph 4.1, it is possible to
have explicit expressions for the initial vector fields so that one can estimate
their initial size without making use of the Cauchy inequalities. In particular,
since we are working with analytic hamiltonians, the maximum modulus
theorem (see [35] for its statement and proof) insures that each function
and each vector field component attains its maximum at the boundary of its
domain. Therefore, our initial estimates were carried out by calculating the
values of each function and each vector field component on a large number of
randomly-chosen points belonging to the boundary of their domains and by
taking their maximum. The chosen number of points was 106 for each trial
and multiple tests have been done to check that the estimates stayed stable
for different random trials. Though not mathematically rigorous like the
one used in the planetary case, this method is an easy way to have a strong
indication on initial estimates. If one wanted rigorous estimates (though the
authors believe that they would not substantially differ from those obtained
with the probabilistic draw described above) a possible solution avoiding
Cauchy inequalities may involve the use of complex interval arithmetic (see
e.g. [29]).
As for the initial conditions, the planet’s semi-major axis was set to be that
of Jupiter at J2000, whereas we chose e(0) ∈ [0, 0.2] as the range of arbitrary
initial values for the eccentricity of the massless body and we tried many
different values for its semi-major axis in the neighborhood of the 3 : 1 reso-
nance with Jupiter. As in the planetary case, the longest times of stability
are obtained for an initial condition in the action L corresponding exactly to
the resonance.
Times of stability for different values of ε, together with those obtained in
[8] in the non-resonant regime, are shown in the following table, where N
denotes the number of preliminary averagings to higher orders of the initial
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perturbation. We were only able to perform N = 1 at most since more steps
involved a huge increase in CPU time due to the estimates on a high number
of randomly chosen boundary points that we described above. However, even
a single preliminary step gives a clear idea of how things work in the resonant
regime we are considering. Indeed, the authors in [8] deal with a high order
completely non-resonant domain; nevertheless, we think it is interesting to
compare the results obtained in the two cases, especially in terms of the
thresholds on the perturbation, since a non-sharp version of Nekhoroshev
theorem (originally stated in [32]) was used in [8].

N m log(ε) t̄ (y) Lf (t̄)/L |e(t)− e(0)|
This work 0 8 −8.75 2.13× 1011 2.87× 10−5 3.4× 10−2

This work 1 8 −7.00 1.20× 109 3.25× 10−6 3.9× 10−3

Ref. [8] 0 - −13.00 1.13× 1010 4.47× 10−6 −
Ref. [8] 1 - −8.00 1.13× 1010 2.00× 10−7 −

Table 4: From left to right: number of preliminary averaging steps, number of iterative
steps, size of the perturbation, time of stability, variation of the action variables, variation
in eccentricity. Initial conditions in the semi-major axis for our resonant case are set to be
those corresponding exactly to the 3 : 1 resonance, whereas e(0) = 0.1. Initial conditions
for Ref. [8] are set to be those of asteroid Ceres.

As one can easily see, sharp estimates seem to play a role since the thresholds
on the value of ε yielding good times of stability are largely improved. It
would be interesting to develop more powerful numerical tools in order to
compare our sharp results with those in [8] for higher values of N (N ≤ 4
in [8]). However, we expect the confinement in the action variables to be
less strong in our case, since we are in a low order resonant region. We also
expect that a higher order of preliminary averaging N would allow one to
reach good thresholds on the allowed size of ε and good times of stability.
By any means, as far as we focus on the limits of the theory we deal with, our
computations for the restricted problem show that the main issue is the growth
with ε of the bound δ on the remainder of order two in the developement of
the unperturbed hamiltonian. As we showed when considering computations
for the planetary case and as explicit estimates in theorem 6 show, one is
obliged to choose larger domains in the action variables when increasing the
value of ε in order to get a good time of stability. Therefore δ may become
large, since averaging theory leaves the unperturbed hamiltonian untouched.
This, in turn, prevents iterative lemma 9 from working properly (it may
not dimish the size of the perturbation enough when δ is too big). One
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could attempt to hinder such growth by diminishing the analyticity width
in the action variables, but this would only result in diminishing the time of
stability since the costant C3 in (90) increases as r2

L. Our computations show
that, for N = 0, the growth of δ becomes preponderant when considering
magnitudes for the perturbation such that ε < 10−10. Increasing the number
N of preliminary averaging steps seems thus the only possible way in order
to get more realistic values for ε.

Appendix A. Proof of the estimates in lemma 4

In this appendix, we give the proof of estimates (41), (42) and (43) in the
statement of lemma 4.
We start by remarking that the hamiltonian vector field Xr1 of the remainder
(46) in lemma (4) is bounded by

∣∣Xj
r1

∣∣
1−2α

≤
8∑

k=1

∣∣Mjk
∣∣
1−2α

∣∣∣[Xφ1 , Xg0+tf0 ]k
∣∣∣
1−α

. (A.1)

Then we state the following

Definition 1. Let A be a m×n matrix whose entries ajk, with j ∈ {1, ...,m}
and k ∈ {1, ..., n}, are complex-valued functions defined in a complex domain
E, i.e.

ajk : Cl ⊃ E −→ C ,

with l a positive integer.
Let B be a m× n matrix with constant real entries.
We say that A is bounded by B on E, and we simply write A ≤ B, iff

|ajk|E ≤ bjk ∀ (j, k) ∈ {1, ...,m} × {1, ..., n} .

With this definition, we can state that
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Lemma 1. M is bounded on D1−2α by a matrix M̄ which reads
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.

Proof. We consider the Jacobian DΛt
φ1

and we decompose it into 4×4 matrix
blocks

DΛt
φ1

:=

(
A B
C D

)
,

The matrices J and J −1 = −J act on the blocks of DΛt
φ1

by mixing and
transposing them and the proof of the statement follows by making use of
the Cauchy inequalities for each entry of M.

Once M has been bounded, we must give an estimate to the Lie brackets
appearing in expression (46). To do so, we use a result which is proven in
[11] and which we briefly recall in the sequel.

Consider E , an open and bounded domain of Rn, and two vectors ς, σ ∈ Rn

with positive entries and such that for each component σj < ςj, j ∈ {1, ..., n}.
We define the complex polydisk Eς as

Eς := {z ∈ Cn s.t. |zj − z∗j | < ςj, z
∗
j ∈ E}

and we have the following estimates on Lie and Poisson brackets:

Lemma (Fassò, 1990) 1. Let X be a hamiltonian vector field analytic in
Eς , with an associated hamiltonian function H.
Then:
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1. For any function f analytic in Eς one has

|{H, f}|ς−σ = |LX(f)|ς−σ ≤ max
j∈{1,...,n}

( |Xj|ς−σ
σj

)
|f |ς . (A.2)

2. For any vector field Y , analytic in Eς , one has∣∣∣[X, Y ]k
∣∣∣
ς−σ
≤
∣∣Xk

∣∣
ς

max
j∈{1,...,n}

( |Y j|ς
σj

)
+
∣∣Y k
∣∣
ς

max
j∈{1,...,n}

( |Xj|ς
σj

)
.

(A.3)

As a straightforward consequence of this lemma we have the following

Corollary 1. The expression |[Xφ1 , Xg0+tf0 ]|1−α appearing in formula (A.1)
can be bounded by the quantity

w̄ :=
1

α
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, (A.4)

where Θ0, χ0 are defined in (23).

By plugging these estimates into expression (A.1), one can find a bound on
the hamiltonian vector field of the remainder which reads∣∣Xj

r1

∣∣
1−2α

≤
8∑

k=1

∣∣Mjk
∣∣
1−2α

∣∣∣[Xφ1 , Xg0+tf0 ]k
∣∣∣
1−α
≤

8∑
k=1

M̄jkw̄k. (A.5)

Estimates (41) and (42) follow immediately from the expression above when
one takes into account expressions (47) as well as the definitions of the
anisotropic norms.
In order to get an estimate on the remainder, on the other hand, we immedi-
ately remark that the latter can be bounded by expression

|r1|1−2α =

∣∣∣∣∫ 1

0

{φ1, g0 + tf0} ◦ Λt
φ1
dt

∣∣∣∣
1−2α

≤ |{φ1, g0}|1−α + |{φ1, f0}|1−α .

(A.6)
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By applying formula (A.2) to the two terms on the right side of this inequality
and by taking the following estimate

|φ1|1 :=

∣∣∣∣ 1

T

∫ T

0

tf0 ◦ Λt
hdt

∣∣∣∣
1

≤ T

2
|f0|1

into account one gets estimate (43).

Appendix B. Corollary to the normal form lemma

Corollary 7. The transformation Ψm defined in the normal form lemma is
invertible and

Ψ−1
m : D

1−Tη0
2

1−qm1
1−q1

,1−TΞ0
2

1−qm2
1−q2

−→ D1 , Ψ−1
m := Φ−1

m ◦ ... ◦ Φ−1
1 , (B.1)

where Φj is the transformation involved at the j-th iteration of lemma (4).
Moreover, Ψ−1

m has the same size as Ψm, namely∣∣∣∣Ψ−1
m − id

∣∣∣∣
1−Tη0

2

1−qm1
1−q1
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1−Tη0

2

1−qm1
1−q1

,1−TΞ0
2

1−qm2
1−q2

≤ TΞ0

2
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1− q2

.

(B.2)

Proof. Consider transformation Φ1 defined in lemma (4). From the one-
parameter group properties of the hamiltonian flow Λt

φ1
, one has

Λ−tφ1
◦ Λt

φ1
= id .

Thanks to the linearity of the operator Lφ1 one can also write

Λ−1
φ1

:= exp−Lφ1 = expL−φ1 := Λ1
−φ1

;

consequently, the same estimates hold for Λt
φ1

and Λ−tφ1
.

Moreover, the inclusion Λ−1
φ1
◦ Λ1

φ1
(D1−2α) = D1−2α ⊂ Λ−1

φ1
(D1−α) holds, so

that finally we can define

Φ−1
1 : D1−α −→ D1 , (I, ϑ, x, y) 7−→ Λ−1

φ1
(I, ϑ, x, y) . (B.3)

By taking such properties into account and by following the same strategy as
in the proof of lemma 3, the thesis follows immediately.
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Appendix C. Normal form for the restricted problem

Lemma (normal form lemma) 8. With the definitions above, suppose that
there exist a positive integer m and five real numbers p, qj,with j ∈ {L,G, l, g},
such that

2υj0(m) < qj , 2ζ0(m) < p . (C.1)

Then there exist a symplectic transformation Ψm, analytic and real-valued for
any real argument

Ψm : D1 −→ D
1+

Tη
j
0

2

1−qm
j

1−qj

,

whose size is ∣∣∣∣∣∣(Ψm − id)j
∣∣∣∣∣∣

1
≤ Tηj0

2

1− qmj
1− qj

, j ∈ {L,G, l, g} (C.2)

such that
Hm := H0 ◦Ψm = h+ gm + fm ,

where {h, gm} = 0 and 〈fm〉h = 0.
Furthermore, one has the following estimates (j ∈ {L,G, l, g}):∣∣∣∣Xj

fm

∣∣∣∣
1
≤ qmj η

j
0 ,

∣∣∣∣Xj
gm −X

j
G
∣∣∣∣

1
≤ γj0 +

qj
2

1− qmj
1− qj

ηj0

|fm|1 ≤ pm |f0|3 , |gm − G|1 ≤ |g0 − G|3 +
p

2

1− pm

1− p
|f0|3 .

(C.3)

As in section 3.3, such lemma can be demonstrated by iterating m times the
following

Lemma (iterative lemma) 9. Assume the construction of section 4.2 and
suppose that for a real number α ∈ (0, 1) one has

T

2α
max{ηL0 , ηG0 , ηl0, η

g
0} < 1. (C.4)

Then there exist a symplectic analytical transformation Φ1 of generating
function φ1

Φ1 : D3−2α −→ D3−α ,

which is real valued for any real argument, and whose size is

||(Φ1 − id)j||3−2α ≤
Tηj0

2
j ∈ {L,G, l, g}, (C.5)
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which takes the hamiltonian into the following form:

H1 := H0 ◦ Φ1 = h+ g1 + f1 ,

where {h, g1} = 0 and 〈f1〉h = 0.

Furthermore, one has the following estimates on functions and vector fields

|f1|3−2α ≤ 2ζ0

(
1

α

)
|f0|3, |g1 − G|3−2α ≤ ζ0

(
1

α

)
|f0|3 + |g0 − G|3 ,

||Xj
f1
||3−2α ≤ 2υj0

(
1

α

)
ηj0, ||Xj

g1
−Xj

G||3−2α ≤ υj0

(
1

α

)
ηj0 + γj0 ,

(C.6)

where j ∈ {L,G, l, g}.

The normal form lemma and the iterative are proven exactly as lemmas
3 and (4), so we omit their demonstrations. Moreover, a corollary on the
existence of the inverse transformation for the normal form holds also in this
case. Its statement and proof are analogous to those of corollary 7, so we
omit them as well.
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Fassò for his advices when dealing with Mathematica.
Acknowledgements also go to prof. Gabriella Pinzari and prof. Massimiliano
Guzzo for supporting this work.

[1] V. Arnol’d. Small Denominators and Problems of Stability of Motion in
Classical and Celestial Mechanics. Russian Mathematical Surveys, 18(6):
85–191, 1963.

[2] G. Benettin, L. Galgani, and A. Giorgilli. A proof of Nekhoroshevs
theorem for the stability times in nearly integrable Hamiltonian systems.
Celestial Mechanics & Dynamical Astronomy, 37(1):1–25, 1985.

[3] D. Boccaletti and G. Pucacco. Theory of Orbits. Volume 1: Integrable
Systems and Non-Perturbative methods. Springer, 2004.

42



[4] A. Bounemoura. An example of instability in high-dimensional Hamilto-
nian systems. International Mathematics Research Notices, (3):685–716,
2012.

[5] A. Bounemoura and L. Niederman. Generic Nekhoroshev theory without
small divisors. Annales de l’Institut Fourier, (62):277–324, 2012.

[6] T. Castan. Stability in the plane, planetary three-body problem. PhD
Thesis, Université Paris VI, 2017.
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XVI, pages 45–133, 2012.

[10] L. Chierchia and G. Pinzari. The Planetary N -Body Problem: Symplectic
Foliation, Reductions and Invariant Tori. Invent. Math., 186(1):1–77,
2011.
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